Log in

Existence of Traveling Waves of Invasion for Ginzburg–Landau-type Problems in Infinite Cylinders

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study a class of systems of reaction–diffusion equations in infinite cylinders which arise within the context of Ginzburg–Landau theories and describe the kinetics of phase transformation in second-order or weakly first-order phase transitions with non-conserved order parameters. We use a variational characterization to study the existence of a special class of traveling wave solutions which are characterized by a fast exponential decay in the direction of propagation. Our main result is a simple verifiable criterion for existence of these traveling waves under the very general assumptions of non-linearities. We also prove boundedness, regularity, and some other properties of the obtained solutions, as well as several sufficient conditions for existence or non-existence of such traveling waves, and give rigorous upper and lower bounds for their speed. In addition, we prove that the speed of the obtained solutions gives a sharp upper bound for the propagation speed of a class of disturbances which are initially sufficiently localized. We give a sample application of our results using a computer-assisted approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Proceedings of the Tulane Program in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, 446, pp. 5–49. Springer, Berlin, 1975

  3. Benguria, R.D., Depassier, M.C.: Speed of fronts of the reaction-diffusion equation. Phys. Rev. Lett. 77, 1171–1173 (1996)

    Article  ADS  Google Scholar 

  4. Ben-Jacob, E., Brand, H., Dee, G., Kramer, L., Langer, J.S.: Pattern propagation in nonlinear dissipative systems. Physica D 14, 348–364 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Berestycki, H., Nirenberg, L.: Traveling fronts in cylinders. Annales de l’Institut Henri Poincaré—Analyse non linéaire 9, 497–572 (1992)

    MATH  MathSciNet  Google Scholar 

  6. Billingham, J.: Phase plane analysis of one-dimensional reaction-diffusion waves with degenerate reaction terms. Dynam. Stabil. Syst. 15, 23–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bray, A.J.: Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. Carmona, R.A., Rozovskii, B. (eds.): Stochastic Partial Differential Equations: Six Perspectives, vol. 64 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, 1999

  9. Cheney, W.: Analysis for Applied Mathematics. Springer, New York (2001)

    MATH  Google Scholar 

  10. Conley, C.: Isolated Invariant Sets and the Morse Index, vol.,38 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, 1978

  11. Cross, M., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  ADS  Google Scholar 

  12. Dal Maso, G.: An Introduction to Γ-Convergence. Birkhäuser, Boston (1993)

    Google Scholar 

  13. Delfour, M.C., Zolésio, J.P.: Shape analysis via distance functions. J. Funct. Anal. 123, 129–201 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with the Kac potentials I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7, 633–696 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Evans, L.C., Gariepy, R.L.: Measure Theory and Fine Properties of Functions. CRC, Boca Raton (1992)

    MATH  Google Scholar 

  16. Fiedler, B., Scheel, A., Vishik, M.: Large patterns of elliptic systems in infinite cylinders. J. Math. Pures Appl. 77, 879–907 (1998)

    MATH  MathSciNet  Google Scholar 

  17. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Springer, Berlin (1979)

    MATH  Google Scholar 

  18. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 355–369 (1937)

    Google Scholar 

  20. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  21. Hadeler, K.P., Rothe, F.: Travelling fronts in nonlinear diffusion equations. J. Math. Biol. 2, 251–263 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hale, J.K.: Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1988)

    Google Scholar 

  23. Heinze, S.: Travelling Waves for Semilinear Parabolic Partial Differential Equations in Cylindrical Domains. Preprint 506, SFB 123, University of Heidelberg, 1989

  24. Heinze, S.: A Variational Approach to Traveling Waves. Preprint 85, Max Planck Institute for Mathematical Sciences, 2001

  25. Heinze, S., Papanicolaou, G., Stevens, A.: Variational principles for propagation speeds in inhomogeneous media. SIAM J. Appl. Math. 62, 129–148 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  ADS  Google Scholar 

  27. Katsoulakis, M.A., Vlachos, D.G.: From microscopic interactions to macroscopic laws of cluster evolution. Phys. Rev. Let. 84, 1511–1514 (2000)

    Article  ADS  Google Scholar 

  28. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem. Bull. Univ. Moscow, Ser. Int., Sec. A 1, 1–25 (1937)

    Google Scholar 

  29. Landau, L.D., Lifshits, E.M.: Course of Theoretical Physics, vol. 5. Pergamon, London (1980)

    Google Scholar 

  30. Landau, L.D., Lifshits, E.M.: Course of Theoretical Physics, vol. 8. Pergamon, London (1984)

    Google Scholar 

  31. Lifshits, E.M., Pitaevskii, L.P.: Physical Kinetics. Pergamon, Oxford (1981)

    Google Scholar 

  32. Lucia, M., Muratov, C.B., Novaga, M.: Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium. Comm. Pure Appl. Math 57, 616–636 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, vol. 16. Birkhäuser, Basel (1995)

    Google Scholar 

  34. Medvedev, G., Ono, K., Holmes, P.: Traveling wave solutions of the degenerate Kolmogorov–Petrovski–Piskunov equation. Eur. J. Appl. Math. 14, 343–367 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mielke, A.: Essential manifolds for an elliptic problem in an infinite strip. J. Differen. Equat. 110, 322–355 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mischaikow, K.: Homoclinic orbits in Hamiltonian systems and heteroclinic orbits in gradient and gradient-like systems. J. Differen. Equat. 81, 167–213 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  37. Muratov, C.B.: A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete Cont. Dyn. S., Ser. B 4, 867–892 (2004)

    MATH  MathSciNet  Google Scholar 

  38. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    MATH  Google Scholar 

  39. Reineck, J.F.: Traveling wave solutions to a gradient system. Trans. Amer. Math. Soc. 307, 535–544 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  40. Risler, E.: Invasion of a Stable Equilibrium for Spatially Extended Gradient-like Systems. Preprint, Institut Non Linéaire de Nice, 2002

  41. Roquejoffre, J.-M.: Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 499–552 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  42. RoquejoffreJ.M. Terman, D., Volpert, V.A.: Global stability of traveling fronts and convergence towards stacked families of waves in monotone parabolic systems. SIAM J. Math. Anal. 27, 1261–1269 (1996)

    Article  MathSciNet  Google Scholar 

  43. Smoller, J.: Shock waves and Reaction-Diffusion Equations. Springer, New York (1983)

    MATH  Google Scholar 

  44. Taylor, M.E.: Partial Differential Equations III: Nonlinear Equations. Springer, Berlin (1996)

    MATH  Google Scholar 

  45. Terman, D.: Infinitely many traveling wave soutions of a gradient system. Trans. Amer. Math. Soc. 301, 537–556 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  46. Toledano, J.-C., Toledano, P.: The Landau Theory of Phase Transitions: Application to Structural, Incommensurate, Magnetic, and Liquid Crystal Systems. World Scientific, Singapore (1987)

    Google Scholar 

  47. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003)

    Article  MATH  ADS  Google Scholar 

  48. Vega, J.M.: The asymptotic behavior of the solutions of some semilinear elliptic equations in cylindrical domains. J. Differ. Equations 102, 119–152 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  49. Volpert, A., Volpert, V.: Existence of multidimensional traveling waves and systems of waves. Comm. Partial Differen. Equat. 26, 421–459 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. Volpert, A., Volpert, V., Volpert, V.: Traveling Wave Solutions of Parabolic Systems. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lucia.

Additional information

Communicated by F. Otto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucia, M., Muratov, C.B. & Novaga, M. Existence of Traveling Waves of Invasion for Ginzburg–Landau-type Problems in Infinite Cylinders. Arch Rational Mech Anal 188, 475–508 (2008). https://doi.org/10.1007/s00205-007-0097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0097-x

Keywords

Navigation