Log in

Three-Dimensional Instability of Planar Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the stability of two-dimensional solutions of the three-dimensional Navier–Stokes equations, in the limit of small viscosity. We are interested in steady flows with locally closed streamlines. We consider the so-called elliptic and centrifugal instabilities, which correspond to the continuous spectrum of the underlying linearized Euler operator. Through the justification of highly oscillating Wentzel–Kramers–Brillouin expansions, we prove the nonlinear instability of such flows. The main difficulty is the control of nonoscillating and nonlocal perturbations issued from quadratic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayly B.J. (1988) Three-dimensional centrifugal type instability in an inviscid two-dimensional flow. Phys. Fluids 31, 56–64

    Article  MATH  ADS  Google Scholar 

  2. Bayly B.J. (1986) Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57(17): 2160–2163

    Article  ADS  MathSciNet  Google Scholar 

  3. Bayly B.J. (2006) Shortwave centrifugal instability in the vicinity of vanishing total vorticity streamlines. Phys. Fluids 18, 058102

    Article  Google Scholar 

  4. Billant P., Gallaire F. (2005) Generalized rayleigh criterion for non axisymmetric centrifugal instabilities. J. Fluid Mech. 542, 365–379

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Chemin J.-Y.: Perfect incompressible fluids, vol. 14 of Oxford Lecture Series in Mathematics and its Applications. Clarendon and Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie

  6. Desjardins B., Grenier E. (2003) Linear instability implies nonlinear instability for various types of viscous boundary layers. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1): 87–106

    Article  MATH  MathSciNet  Google Scholar 

  7. Friedlander S., Strauss W., Vishik M. (1997) Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(2): 187–209

    Article  MATH  MathSciNet  Google Scholar 

  8. Friedlander S., Vishik M.M. (1991) Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66(17): 2204–2206

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Gérard-Varet, D.: Oscillating solutions of incompressible magnetohydrodynamics and dynamo effect. SIAM J. Math. Anal. 37(3), 815–840 (2005) (electronic)

    Google Scholar 

  10. Gérard-Varet, D., Rousset, F.: Shear layer solutions of incompressible MHD and dynamo effect. Ann. Inst. H. Poincaré Anal. Non Linéaire (2007)(to appear)

  11. Grenier E. (2000) On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9): 1067–1091

    Article  MATH  MathSciNet  Google Scholar 

  12. Grenier E., Jones C.K.R.T., Rousset F., Sandstede B. (2005) Viscous perturbations of marginally stable Euler flow and finite-time Melnikov theory. Nonlinearity 18(2): 465–483

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Grenier E., Rousset F. (2001) Stability of one-dimensional boundary layers by using Green’s functions. Commun. Pure Appl. Math. 54(11): 1343–1385

    Article  MATH  MathSciNet  Google Scholar 

  14. Hwang H.J., Guo Y. (2003) On the dynamical Rayleigh–Taylor instability. Arch. Ration. Mech. Anal. 167(3): 235–253

    Article  MATH  MathSciNet  Google Scholar 

  15. Kerswell, R.R.: Elliptical instability. In: Annual review of fluid mechanics, Vol. 34, vol. 34 of Annu. Rev. Fluid Mech. Annual Reviews, Palo Alto, pp. 83–113, 2002

  16. Lifschitz A., Hameiri E. (1991) Local stability conditions in fluid dynamics. Phys. Fluids A 3(11): 2644–2651

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Lin Z. (2004) Some stability and instability criteria for ideal plane flows. Commun. Math. Phys. 246(1): 87–112

    Article  MATH  ADS  Google Scholar 

  18. Magnus, W., Winkler, S.: Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20. Interscience John, New York-London-Sydney, 1966

  19. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96 of Applied Mathematical Sciences. Springer, New York, 1994

  20. Pierrehumbert R.T. (1986) Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57(17): 2157–2159

    Article  ADS  Google Scholar 

  21. Rayleigh L. (1916) On the dynamics of revolving fluids. Proc. R. Soc. Lond. Ser. A 93: 148–154

    Article  ADS  Google Scholar 

  22. Shvydkoy R., Latushkin Y. (2005) Essential spectrum of the linearized 2D Euler equation and Lyapunov–Oseledets exponents. J. Math. Fluid Mech. 7(2): 164–178

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Sipp D., Jacquin L. (2000) Three-dimensional centrifugal-type instabilities of two-dimensional flows in rotating systems. Phys. Fluids 12(7): 1740–1748

    Article  ADS  MathSciNet  Google Scholar 

  24. Stein E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, vol. 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III

  25. Vishik M. (1996) Spectrum of small oscillations of an ideal fluid and Lyapunov exponents. J. Math. Pures Appl. (9) 75(6): 531–557

    MATH  MathSciNet  Google Scholar 

  26. Vishik M.M., Friedlander S. (1993) Dynamo theory methods for hydrodynamic stability. J. Math. Pures Appl. (9) 72(2): 145–180

    MATH  MathSciNet  Google Scholar 

  27. Waleffe F. (1990) On the three-dimensional instability of strained vortices. Phys. Fluids A 2(1): 76–80

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gallaire.

Additional information

Communicated by C. M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallaire, F., Gérard-Varet, D. & Rousset, F. Three-Dimensional Instability of Planar Flows. Arch Rational Mech Anal 186, 423–475 (2007). https://doi.org/10.1007/s00205-007-0072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0072-6

Keywords

Navigation