Log in

Fungal wood-degrading enzymes in esca-diseased grapevine and effects of carbohydrate environment on fungal development

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In esca disease affecting grapevines, Phaeomoniella chlamydospora and Phaeoacremonium minimum colonize the woody parts of the trunks and arms, where they obtain nutrition from xylem sap and, potentially, from residues resulting from the enzymatic breakdown of lignified cell walls, particularly osidic residues. We quantified the secretion of lignin peroxidase, manganese peroxidase and laccase by these fungi in woody tissues of selectively infected cuttings using immunolabeling and transmission electron microscopy. Our results indicated that the detection of these enzymes was generally higher in tissues infected with Phaeoacremonium minimum. These data were confirmed through immunodetection of enzymes secreted by hyphae of fungi grown in vitro. Additionally, we observed that the supply of various carbohydrates (mono, di, tri and tetrasaccharides and polymers) differentially influenced fungal growth and polypeptide secretion. Since some secreted polypeptides display detrimental effects on grapevine cells, these results raise the question of whether the carbohydrate environment could be a factor affecting the aggressiveness of these pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All datasets are presented in the main manuscript and supplementary data S1 and S2.

References

  • Andolfi A, Mugnai L, Luque J, Surico G, Cimmino A, Evidente A (2011) Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins 3:1569–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonielli L, Compant S, Strauss J, Sessitsch A, Berger H (2014) Draft genome sequence of Phaeomoniella chlamydospora strain RR-HG1, a grapevine trunk disease (esca)-related member of the Ascomycota. Genome Announc 2(2):e00098-e114. https://doi.org/10.1128/genomeA.00098-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Bearden JC (1978) Quantification of submicrogram quantities of protein by an improved-dye binding assay. Biochim Biophys Acta 533:525–529

    Article  CAS  PubMed  Google Scholar 

  • Bertsch C, Ramirez-Suero M, Magnin-Robert M, Larignon P, Chong J, Abou-Mansour E, Spagnolo A, Clément C, Fontaine F (2012) Grapevine trunk diseases: complex and still poorly understood. Plant Pathol 62:243–265

    Article  Google Scholar 

  • Bortolami G, Gambetta GA, Delzon S, Lamarque LJ, Pouzoulet J, Badel E, Burlett R, Charrier G, Cochard H, Dayer S, Jansen S, King A, Lecomte P, Lens F, Torres-Ruiz JM, Delmas CEL (2019) Exploring the hydraulic failure hypothesis of esca leaf symptom formation. Plant Physiol 181:1163–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno G, Sparapano L (2006) Effects of three esca-associated fungi on Vitis vinifera L.: III. Enzymes produced by the pathogens and their role in fungus-to-plant or in fungus-to-fungus interactions. Physiol Mol Plant Pathol 69:182–194

    Article  CAS  Google Scholar 

  • Calvo-Garrido C, Songy A, Marmol A, Roda R, Clément C, Fontaine F (2021) Description of the relationship between trunk disease expression and meteorological conditions, irrigation and physiological response in Chardonnay grapevines. OENO One 2:97–113

    Article  Google Scholar 

  • Choi J, Détry N, Kim K-T, Asieghu FO, Valkonen JPT, Lee Y-H (2014) fPoxDB: fungal peroxidase database for comparative genomics. BMC Microbiol 14:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou EY, Schuetz M, Hoffmann N, Watanabe Y, Sibout R, Samuels AL (2018) Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J Exp Bot 69:1849–1859

    Article  Google Scholar 

  • Cloete M, Fischer M, Mostert L, Halleen F (2015) Hymenochaetales associated with esca-related wood rots on grapevine with a special emphasis on the status of esca in South African vineyards. Phytopathol Mediterr 54:299–312

    Google Scholar 

  • Conesa A, Punt PJ, van den Hondel CAMJJ (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Gams W, Wingfield MJ, Van Wyk PS (1996) Phaeoacremonium gen. nov. associated with wilt and decline diseases of woody hosts and human infections. Mycologia 88:786–796

    Article  Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (1969) Data for biochemical research (2nd edition). Clarendon press, Oxford, p 666

    Google Scholar 

  • Doblin M, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis In plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. Microbiol Open 6:e00394

    Article  Google Scholar 

  • Ferreira J, van Wyk P, Calitz F (1999) Slow dieback of grapevine in South-Africa- Stress-related predisposition of young vines for infection by Phaeoacremonium chlamydosporum. S Afr Enol Vitic 20:43–46

    Google Scholar 

  • Fleurat-Lessard P, Luini E, Berjeaud J-M, Roblin G (2010) Diagnosis of grapevine esca disease by immunological detection of Phaeomoniella chlamydospora. Aust J Grape Wine Res 16:455–463

    Article  CAS  Google Scholar 

  • Fleurat-Lessard P, Luini E, Berjeaud J-M, Roblin G (2014) Immunological detection of Phaeoacremonium aleophilum, a fungal pathogen found in esca disease. Eur J Plant Pathol 139:137–150

    Article  Google Scholar 

  • Glad C, Regnard JL, Querou Y, Brun O, Morot-Gaudry J-F (1992) Flux and chemical composition of xylem exudates from chardonnay grapevines: temporal evolution and effects of recut. Am J Enol Vitic 43:275–281

    Article  CAS  Google Scholar 

  • Gomez P, Baidez AG, Ortuno A, Del Rio JA (2016) Grapevine xylem response to fungi involved in trunk diseases. Ann Appl Bio 169:116–124

    Article  Google Scholar 

  • Gramaje D, Mostert L, Groenewald JZ, Crous PW (2015) Phaeoacremonium: From esca disease to phaeohyphomycosis. Fung Biol 119:759–783

    Article  Google Scholar 

  • Groenewald M, Kang JC, Crous PW, Gams W (2001) ITS and β-tubulin phylogeny of Phaeoacremonium and Phaeomoniella species. Mycol Res 105:651–657

    Article  CAS  Google Scholar 

  • Higuchi T, Kitamura K (1953) Biochemical study of wood-rooting fungi. J Jap Forest Soc 35:350–354

    CAS  Google Scholar 

  • Janusz G, Pawlik A, Swiderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczynski A (2020) Laccase properties, physiological functions, and evolution. Int J Mol Sci 21:966. https://doi.org/10.3390/ijms21030966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantharaj P, Boobalan B, Sooriamuthu S, Mani R (2017) Lignocellulose degrading enzymes from fungi and their industrial applications. Int J Cur Res Rev 9:12

    Google Scholar 

  • Kumar A, Chandra R (2020) Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03170

    Article  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Larchevêque C, Casanova A (1999) Les principaux acides aminés de la sève brute de Vitis vinifera L. Var. Cabernet franc au cours du cycle végétatif. Recherche d’un acide aminé marqueur. J Int Vigne Vin 33:49–55

    Google Scholar 

  • Larignon P, Dubos B (1997) Fungi associated with Esca disease in grapevine. Eur J Plant Pathol 103:147–157

    Article  Google Scholar 

  • Lecomte P, Darrieufort G, Liminana J-M, Comont G, Muruamendiaraz A, Legorburu F-J, Choueiri E, Jreijiri F, El Amil R, Fermaud M (2012) New insights into esca of grapevine: the development of foliar symptoms and their association with xylem discoloration. Plant Dis 96:924–934

    Article  CAS  PubMed  Google Scholar 

  • Lima MRM, Marchado AF, Gubler WD (2017) Metabolomic study of Chardonnay grapevines double stressed with esca-associated fungi and drought. Phytopathol 107:669–680

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, D’Ambrosio M, Harman GE, Hayes CK, Kubicek CP, Scala F (1996) Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. MPMI 9:206–213

    Article  CAS  Google Scholar 

  • Luini E, Fleurat-Lessard P, Rousseau L, Roblin G, Berjeaud J-M (2010) Inhibitory effects of polypeptides secreted by the grapevine pathogens Phaeomoniella chlamydospora and Phaeoacremonium aleophilum on plant cell activities. Physiol Mol Plant Pathol 74:403–411

    Article  CAS  Google Scholar 

  • Magnin-Robert M, Spagnolo A, Boulanger A, Joyeux C, Clément C, Abou-Mansour E, Fontaine F (2016) Changes in plant metabolism and accumulation of fungal metabolites in response to esca proper and apoplexy expression in the whole grapevine. Phytopathology 106:541–553

    Article  CAS  PubMed  Google Scholar 

  • Marchi G, Roberti S, D’Ovidio R, Mugnai L, Surico G (2001) Pectic enzymes production by Phaeomoniella chlamydospora. Phytopathol Mediterr 40:407–416

    Google Scholar 

  • Marchi G, Peduto F, Mugnai L, Di Marco S, Calzarano F, Surico G (2006) Some observations on the relationship of manifest and hiden esca to rainfall. Phytopathol Mediterr 45:S117–S126

    Google Scholar 

  • Massonnet M, Morales-Cruz A, Minio A, Figueroa-Balderas R, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D (2018) Whole-genome resequensing and pan-transcriptome reconstruction highlight the impact of genomic structural variation on secondary metabolite gene clusters in the grapevine esca pathogen Phaeoacremonium minimum. Front Microbiol 9:1784. https://doi.org/10.3389/fmicb.2018.01784

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostert L, Crous PW, Groenewald JZ, Gams W, Summerbell R (2003) Togninia (Calosphaeriales) is confirmed as teleomorph of Phaeoacremonium by means of morphology, sexual compatibility, and DNA phylogeny. Mycologia 95:646–659

    Article  PubMed  Google Scholar 

  • Mostert L, Groenewald JZ, Summerbell RC, Gams W, Crous PW (2006) Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Studies Mycol 54:1–115

    Article  Google Scholar 

  • Mugnai L, Graniti A, Surico G (1999) Esca (black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Dis 83:404–418

    Article  CAS  PubMed  Google Scholar 

  • Nicolcioiu MB, Popa G, Matei F (2018) Biochemical investigations of different mushroom species for their biotechnological potential. Sciendo. https://doi.org/10.2478/älife-2018-0088:562-567

    Article  Google Scholar 

  • Pabst M, Fischl RM, Brecker L, Morelle W, Fauland A, Kofeler H, Altmann F, Leonard R (2013) Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant J 76:61–72

    CAS  PubMed  Google Scholar 

  • Pascoe IG, Edwards J, Cunnington JH, Cottral E (2004) Detection of the Togninia teleomorph of Phaeoacremonium aleophilum in Australia. Phytopathol Mediterr 43:51–58

    Google Scholar 

  • Pellegrino A, Clingeleffer P, Cooley N, Walker R (2014) Management practices impact vine carbohydrate status to a greater extent than vine productivity. Front Plant Sci 5:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontini S, Fleurat-Lessard P, Béré E, Berjeaud J-M, Roblin G (2014) Impact of temperature variations on toxic effects of the polypeptides secreted by Phaeacremonium aleophilum. Physiol Mol Plant Pathol 87:51–58

    Article  CAS  Google Scholar 

  • Pouzoulet J, Pivovaroff AL, Santiago LS, Rolshausen PE (2014) Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Front Plant Sci 5:256. https://doi.org/10.3389/fpls.2017.00253

    Article  Google Scholar 

  • Roubelakis-Angelakis KA, Kliewer WM (1979) The composition of bleeding sap from Thomson seedless grapevines as affected by nitrogen fertilization. Am J Enol Vitic 30:14–18

    Article  CAS  Google Scholar 

  • Santos C, Fragoeiro S, Valentim H, Phillips A (2006) Phenotypic characterisation of Phaeacremonium and Phaemoniella strains isolated from grapevines: enzyme production and virulence of extra-cellular filtrate on grapevine callus. Sci Hort 107:123–130

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Snyder FW, Carlson GE (1978) Photosynthate partitioning in sugar beet. Crop Sci 18:657–661

    Article  Google Scholar 

  • Talbot NJ (2010) Living the sweet life: how does a plant pathogenic fungus acquire sugar from plants? PLoS Biol 8(2):e1000308. https://doi.org/10.1371/journalpbio1000308

    Article  PubMed  PubMed Central  Google Scholar 

  • Valtaud C, Larignon P, Roblin G, Fleurat-Lessard P (2009) Developmental and ultrastructural features of Phaeomoniella chlamydospora and Phaeoacremonium aleophilum in relation to xylem degradation in esca disease of the grapevine. J Plant Pathol 91:37–51

    CAS  Google Scholar 

  • Valtaud C, Thibault F, Larignon P, Bertsch C, Fleurat-Lessard P, Bourbouloux A (2011) Systemic damage in leaf metabolism caused by esca infection in grapevines. Aust J Grape Wine Res 17:101–110

    Article  Google Scholar 

  • Van Niekerk JM, Bester W, Halleen F, Crous PW, Fourie PH (2011) The distribution and symptomatology of grapevine trunk disease pathogens are influenced by climate. Phytopathol Mediterr 50:S98–S111

    Google Scholar 

  • Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl Environ Microbiol 61:3515–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275

    Article  CAS  Google Scholar 

  • Vrsanska M, Voberkova S, Langer V, Palovcikova D, Moulick A, Adam V, Kopel P (2016) Induction of laccase, lignin peroxidase and manganese peroxidase activities in white rot fungi using copper complexes. MDPI 21:1553. http://www.mdpi.com/journal/molecules

  • Weise SE, Weber APM, Sharkey TD (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218:474–482

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Yadav KS, Yadav P, Yadav D, Yadav DS (2018) Wide occurrence of manganese peroxidase in plants. GJBB 7:234–238

    Google Scholar 

  • Yan S, Liu Q, Li W, Yan J, Fernie AR (2022) Raffinose family oligosaccharides: Crucial regulators of plant development and stress responses. Crit Rev Plant Sci 41:286–303

    Article  CAS  Google Scholar 

  • Zeng Y, Himmel ME, Ding S-Y (2017) Visualizing chemical functionality in plant cell walls. Biotechnol Biofuels 10:263. https://doi.org/10.1186/s13068-017-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Emile Béré and Bruno Merceron for their assistance in the Image UP Service (Microscopie Electronique et Photonique, Bâtiment B36, TSA 51106, 86022 Poitiers); They also would thank Raphaël Decou, Laboratoire PEIRENE, EA 7500, 123, avenue Albert Thomas, 87060 Limoges for his contribution in wall components analysis.

Funding

Part of the work was financially supported by the Bureau National Interprofessionnel du Cognac (Ph D of EL). The work received additional support from the following 2015–2020 programs: the State-Region Planning Contracts (CPER) and the European Regional Development Fund (FEDER).

Author information

Authors and Affiliations

Authors

Contributions

The work was conceived by JMB and GR. Experiments were performed by EL, FT and PFL. SLC, PFL, JMB and GR contributed to the analysis and interpretation of the data. The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to Jean-Marc Berjeaud.

Ethics declarations

Conflict interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1773 kb)

Supplementary file2 (DOCX 2095 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleurat-Lessard, P., Luini, E., La Camera, S. et al. Fungal wood-degrading enzymes in esca-diseased grapevine and effects of carbohydrate environment on fungal development. Arch Microbiol 205, 194 (2023). https://doi.org/10.1007/s00203-023-03544-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03544-6

Keywords

Navigation