Log in

Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The small cactus Mammillaria fraileana is a pioneer rock-colonizing plant harboring endophytic bacteria with the potential for nitrogen fixation and rock weathering (phosphate solubilization and rock degradation). In seeds, only a combination of culture-independent methods, such as fluorescence in situ hybridization, scanning electron microscopy, and fluorescence vital staining, detected significant amounts of non-culturable, but living, endophytic bacteria distributed underneath the membrane covering the embryo, in the undifferentiated tissue of the embryo, and in the vascular tissue. Large populations of culturable endophytic bacteria were detected in stems and roots of wild plants colonizing rocks in the southern Sonoran Desert, but not in seeds. Among 14 endophytic bacterial isolates found in roots, four isolates were identified by full sequencing of their 16S rRNA gene. In vitro tests indicated that Azotobacter vinelandii M2Per is a potent nitrogen fixer. Solubilization of inorganic phosphate was exhibited by Pseudomonas putida M5TSA, Enterobacter sakazakii M2PFe, and Bacillus megaterium M1PCa, while A. vinelandii M2Per, P. putida M5TSA, and B. megaterium M1PCa weathered rock by reducing the size of rock particles, probably by changing the pH of the liquid media. Cultivated seedlings of M. fraileana, derived from disinfected seeds and inoculated with endophytic bacteria, showed re-colonization 105 days after inoculation. Their densities decreased from the root toward the stem and apical zones. Functional traits in planta of culturable and non-culturable endophytic bacteria in seeds remain unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams PD, Kloepper JW (1996) Seed-borne bacterial endophytes in different cotton cultivars. Phytopathology 86:S97 (abstract)

  • Adams JB, Palmer F, Staley JT (1992) Rock weathering in deserts: mobilization and concentration of ferric iron by microorganisms. Geomicrobiol J 10:99–114

    Article  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Anderson EF (2001) The cactus family. Timber Press, Portland

    Google Scholar 

  • Bacilio-Jimenez M, Aguilar-Flores S, del Valle MV, Perez A, Zepeda A, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172

    Article  CAS  Google Scholar 

  • Barker WW, Banfield JF (1998) Zones of chemical and physical interaction at interfaces between microbial communities and minerals. Geomicrobiol J 15:223–244

    Article  CAS  Google Scholar 

  • Bashan Y, Li CY, Lebsky VK, Moreno M, de-Bashan LE (2002) Primary colonization of volcanic rocks by plants in arid Baja California, Mexico. Plant Biol 4:392–402

    Article  Google Scholar 

  • Bashan Y, Vierheilig H, Salazar BG, de-Bashan LE (2006) Primary colonization and breakdown of igneous rocks by endemic, succulent elephant trees (Pachycormus discolor) of the deserts in Baja California, Mexico. Naturwissenschaften 93:344–347

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Khaosaad T, Salazar BG, Ocampo JA, Wiemken A, Oehl F, Vierheilig H (2007) Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees Struct Funct 21:329–335

    Google Scholar 

  • Benhamou N, Kloepper JW, Quadt-Hallmann A, Tuzun S (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112:919–929

    PubMed  CAS  Google Scholar 

  • Benhamou N, Gagné S, Quéré DL, Dehbi L (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Biochem Cell Biol 90:45–56

    CAS  Google Scholar 

  • Bravo-Hollis H, Sanchez-Mejorada H (1991) Las cactáceas de Mexico III. Universidad Autónoma de Mexico, Mexico City

    Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  PubMed  CAS  Google Scholar 

  • Carrillo AE, Li CY, Bashan Y (2002) Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89:428–432

    Article  PubMed  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  PubMed  CAS  Google Scholar 

  • Daims H, Stoecker K, Wagner M (2005) Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn AM, Smith CJ (eds) Advanced methods in molecular microbial ecology. Bios-Garland, Abingdon, pp 213–239

    Google Scholar 

  • Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479

    Article  PubMed  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  PubMed  CAS  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  PubMed  CAS  Google Scholar 

  • Fein JB, Brady PV, Jain JC, Dorn RI, Jong-Un Lee (1999) Bacteria1 effects on the mobilization of cations from a weathered Pb-contaminated andesite. Chem Geol 158:189–202

    Article  CAS  Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araujo WL (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Kibler AP (1980) Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6:95–108

    Article  CAS  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell CB, Ryan D, Dowling DN (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    Article  PubMed  CAS  Google Scholar 

  • Germaine KJ, Liu X, Garcia-Cabellos G, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte- enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  PubMed  CAS  Google Scholar 

  • Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Heidelberg, pp 15–31

    Chapter  Google Scholar 

  • Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Heidelberg, pp 299–319

    Chapter  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, Overbeek V, Leo S, van Elsas DJ (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Holguin G, Guzman MA, Bashan Y (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees, isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiol Ecol 101:207–216

    Article  CAS  Google Scholar 

  • Institute SAS (1989) JMP version 5.1.2. SAS Institute, Cary

    Google Scholar 

  • James EK (1999) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • Kado CI (1992) Plant pathogenic bacteria. In: Bellows HG, Dworkin M, Harder W, Schleifer HH (eds) The prokaryotes. Springer, New York, pp 660–662

    Google Scholar 

  • Kalinowski BE, Liermann LJ, Givens S, Brantley SL (2000) Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches. Chem Geol 169:357–370

    Article  CAS  Google Scholar 

  • Kalinowski BE, Oskarsson A, Albinsson Y, Arlinger J, Odegaard-Jensen A, Andlid T, Pedersen K (2004) Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad. Geoderma 122:177–194

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Heidelberg, pp 33–52

    Chapter  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 199–236

    Google Scholar 

  • Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120

    Article  CAS  Google Scholar 

  • Levanony H, Bashan Y, Kahana ZE (1987) Enzyme-linked immunosorbent assay for specific identification and enumeration of Azospirillum brasilense Cd. in cereal roots. Appl Environ Microbiol 53:358–364

    PubMed  CAS  Google Scholar 

  • Liermann LJ, Kalinowski BE, Brantley SL, Ferry JG (2000) Role of bacterial siderophores in dissolution of hornblende. Geochim Cosmochim Acta 64:587–602

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lopez BR, Bashan Y, Bacilio M (2009) Rock colonization plants: abundance of the endemic cactus Mammillaria fraileana related to rock type in the southern Sonoran Desert. Plant Ecol 201:575–688

    Article  Google Scholar 

  • Manning VA, Ciuffetti LM (2005) Localization of Ptr ToxA produced by Pyrenophora tritici-repentis reveals protein import into wheat mesophyll cells. Plant Cell 17:3203–3212

    Article  PubMed  CAS  Google Scholar 

  • Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 21:86–100

    Article  Google Scholar 

  • Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol Ecol 42:399–407

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS, Loik ME (1999) Form and function of cacti. In: Robichaux RH (ed) Ecology of Sonoran Desert plants and plant communities. The University of Arizona Press, Tucson, pp 143–163

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Google Scholar 

  • Pikoskaya RI (1948) Mobilization of phosphates in soil in relation with vital activity of some microbial species. Mikrobiologiya 17:362–370 (in Russian)

    Google Scholar 

  • Puente ME, Bashan Y (1994) The desert epiphyte Tillandsia recurvata harbors the nitrogen-fixing bacterium Pseudomonas stutzeri. Can J Bot 72:406–408

    Article  Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004a) Microbial populations and activities in the rhizoplane of rock-weathering desert plants, I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  PubMed  CAS  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2004b) Microbial populations and activities in the rhizoplane of rock-weathering desert plants, II. Growth promotion of cactus seedling. Plant Biol 6:643–650

    Article  PubMed  CAS  Google Scholar 

  • Puente ME, Rodriguez-Jaramillo MC, Li CY, Bashan Y (2006) Image analysis for quantification of bacterial rock weathering. J Microbiol Methods 64:275–286

    Article  PubMed  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009a) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408

    Article  CAS  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009b) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401

    Article  CAS  Google Scholar 

  • Quadt-Hallmann A, Kloepper JW (1996) Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species. Can J Microbiol 42:1144–1154

    Article  CAS  Google Scholar 

  • Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14

    Article  PubMed  CAS  Google Scholar 

  • Rojas-Arechiga M, Vazquez-Yanes C (2000) Cactus seed germination: a review. J Arid Environ 44:85–104

    Article  Google Scholar 

  • Rosenblueth M, Martinez L, Silva J, Martinez-Romero E (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27–35

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Heidelberg, pp 1–11

    Chapter  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif mutant strains. Mol Plant Microbe Interact 14:358–366

    Article  PubMed  CAS  Google Scholar 

  • Söderström BE (1977) Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol Biochem 9:59–63

    Article  Google Scholar 

  • Strobel G (2007) Plant-associated microorganisms (Endophytes) as a new source of bioactive natural products. In: Kayser O, Quax WJ (eds) Medicinal plant biotechnology, from basic research to industrial applications, vol 1. Wiley-VCH, Heidelberg, pp 49–72

    Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Valverde T, Quijas S, Lopez-Villavicencio M, Castillo S (2004) Population dynamics of Mammillaria magnimamma Haworth (Cactaceae) in a lava-field in central Mexico. Plant Ecol 170:167–184

    Article  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wiggins IL (1980) Flora of Baja California. Stanford University Press, Stanford

    Google Scholar 

Download references

Acknowledgments

We thank Bernard Bormann and Ching-Yan Li, USDA Forest Service, Corvallis, Oregon, for helpful discussions and providing facilities to perform the greenhouse experiment. At CIBNOR, we thank Esther Puente and Amaury Cordero (production of antibodies) and Luz de-Bashan (FISH). We thank Kathy Cook, Viola Manning, Linda Ciuffetti, Annie Gerard, Al Soeldner at Oregon State University and Carmen Rodríguez and Ariel Cruz at CIBNOR for assistance with histology, immunostaining, immunolocalization, confocal laser microscopy, and scanning electron microscopy. Seung-Hwan Park from the Korea Research Institute of Bioscience and Biotechnology, Daejong, South Korea, facilitated sequencing procedures. Ira Fogel of CIBNOR provided invaluable editing suggestions. This work was mainly supported by Consejo Nacional de Ciencia y Tecnología (CONACYT grant 50052-Z) and the greenhouse work by the Pacific Northwest Research Station (USDA Forest Service, Corvallis, Oregon). B. L. is a recipient of a doctoral fellowship from CONACYT and a small grant from The Bashan Foundation, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoav Bashan.

Additional information

Communicated by Ursula Priefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, B.R., Bashan, Y. & Bacilio, M. Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert. Arch Microbiol 193, 527–541 (2011). https://doi.org/10.1007/s00203-011-0695-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0695-8

Keywords

Navigation