Log in

Time dependency of bone density estimation from computed tomography with intravenous contrast agent administration

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Our study has demonstrated that in contrast-enhanced multi-detector computed tomography (MDCT)-based bone density measurements, the scan delay time after contrast agent administration is a statistically significant variable for the derivation of quantitative computed tomography (QCT)-equivalent bone mineral density (BMD) values.

Introduction

Earlier investigators have proposed to derive QCT-equivalent BMD values from contrast-enhanced MDCT scans by using a merely density-based conversion equation. The purpose of this study was to investigate whether the scan delay after intravenous (IV) contrast agent administration might affect BMD values derived in this way.

Methods

A retrospective data analysis was performed on 198 subjects who underwent standardized biphasic MDCT. Average densities values (in Hounsfield units) of lumbar vertebral bodies 1 to 3 (L1–L3) were compared between phases I and II of the biphasic MDCT scan. Furthermore, QCT-equivalent BMD (BMDQCT) values were calculated using a previously published conversion equation.

Results

Paired t-test analysis revealed that IV contrast agent administration leads to a statistically significant increase (8.6 %; p < 0.0001) in overall density of L1–L3 from phases I to II. Moreover, comparison of BMDQCT values between phases I and II reveals a change from osteoporotic to osteopenic in 4.5 % of the study population and from osteopenic to normal for 11.1 % of the subjects. Furthermore, it was revealed that the density increase from phases I to II shows a weak, yet statistically significant (p < 0.001) age dependency.

Conclusions

Our study demonstrates that the use of a mere density-based conversion equation for deriving BMDQCT from MDCT scans ignores time dependency as an important variable. Furthermore, our results indicate that the actual age-dependent BMD itself might be another relevant variable that needs to be included in a MDCT-to-QCT conversion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Leibson CL, Tosteson ANA, Gabriel SE, Ransom JE, Melton LJ (2002) Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc 50(10):1644–1650

    Article  PubMed  Google Scholar 

  2. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster J-Y, Borgstrom F et al (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19(4):399–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733

    Article  CAS  PubMed  Google Scholar 

  4. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15(4):721–739

    Article  CAS  PubMed  Google Scholar 

  5. Lenchik L, Shi R, Register TC, Beck SR, Langefeld CD, Carr JJ (2004) Measurement of trabecular bone mineral density in the thoracic spine using cardiac gated quantitative computed tomography. J Comput Assist Tomogr 28(1):134–139

    Article  PubMed  Google Scholar 

  6. Papadakis AE, Karantanas AH, Papadokostakis G, Petinellis E, Damilakis J (2009) Can abdominal multi-detector CT diagnose spinal osteoporosis? Eur Radiol 19(1):172–176

    Article  PubMed  Google Scholar 

  7. Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM et al (2011) Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res 26(9):2194–2203

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hopper KD, Wang MP, Kunselman AR (2000) The use of clinical CT for baseline bone density assessment. J Comput Assist Tomogr 24(6):896–899

    Article  CAS  PubMed  Google Scholar 

  9. Link TM, Koppers BB, Licht T, Bauer J, Lu Y, Rummeny EJ (2004) In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology 231(3):805–811

    Article  PubMed  Google Scholar 

  10. Bauer JS, Henning TD, Müeller D, Lu Y, Majumdar S, Link TM (2007) Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. AJR Am J Roentgenol 188(5):1294–1301

    Article  PubMed  Google Scholar 

  11. Baum T, Müller D, Dobritz M, Rummeny EJ, Link TM, Bauer JS (2011) BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software. Eur J Radiol 80(2):e140–e145

    Article  PubMed  Google Scholar 

  12. Baum T, Müller D, Dobritz M, Wolf P, Rummeny EJ, Link TM et al (2012) Converted lumbar BMD values derived from sagittal reformations of contrast-enhanced MDCT predict incidental osteoporotic vertebral fractures. Calcif Tissue Int 90(6):481–487

    Article  CAS  PubMed  Google Scholar 

  13. American College of Radiology (2008) ACR practice guideline for the performance of quantitative computed tomography bone densitometry. http://www.acr.org/~/media/acr/documents/pgts/guidelines/qct.pdf. Accessed 19 Nov 2012

  14. Felsenberg D, Gowin W (1999) Bone densitometry by dual energy methods. Radiologe 39(3):186–193

    Article  CAS  PubMed  Google Scholar 

  15. Gralow JR, Biermann JS, Farooki A, Fornier MN, Gagel RF, Kumar RN et al (2009) NCCN task force report: bone health in cancer care. J Natl Compr Canc Netw 7(Suppl 3):S1–S32

    PubMed Central  PubMed  Google Scholar 

  16. Brown SA, Guise TA (2009) Cancer treatment-related bone disease. Crit Rev Eukaryot Gene Expr 19(1):47–60

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gilsanz V, Boechat MI, Roe TF, Loro ML, Sayre JW, Goodman WG (1994) Gender differences in vertebral body sizes in children and adolescents. Radiology 190(3):673–677

    CAS  PubMed  Google Scholar 

  18. Gilsanz V, Boechat MI, Gilsanz R, Loro ML, Roe TF, Goodman WG (1994) Gender differences in vertebral sizes in adults: biomechanical implications. Radiology 190(3):678–682

    CAS  PubMed  Google Scholar 

  19. Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 26(7):414–418

    Article  CAS  PubMed  Google Scholar 

  20. Chen WT, Shih TT, Chen RC, Lo SY, Chou CT, Lee JM et al (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220(1):213–218

    Article  CAS  PubMed  Google Scholar 

  21. Griffith JF, Wang Y-XJ, Zhou H, Kwong WH, Wong WT, Sun Y-L et al (2010) Reduced bone perfusion in osteoporosis: likely causes in an ovariectomy rat model. Radiology 254(3):739–746

    Article  PubMed  Google Scholar 

  22. Griffith JF, Yeung DKW, Tsang PH, Choi KC, Kwok TCY, Ahuja AT et al (2008) Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res 23(7):1068–1075

    Article  PubMed  Google Scholar 

  23. Wang Y-XJ, Zhang Y-F, Griffith JF, Zhou H, Yeung DKW, Kwok TC et al (2008) Vertebral blood perfusion reduction associated with vertebral bone mineral density reduction: a dynamic contrast-enhanced MRI study in a rat orchiectomy model. J Magn Reson Imaging 28(6):1515–1518

    Article  CAS  PubMed  Google Scholar 

  24. Biffar A, Sourbron S, Dietrich O, Schmidt G, Ingrisch M, Reiser MF et al (2010) Combined diffusion-weighted and dynamic contrast-enhanced imaging of patients with acute osteoporotic vertebral fractures. Eur J Radiol 76(3):298–303

    Article  PubMed  Google Scholar 

  25. Chen B-B, Hsu C-Y, Yu C-W, Hou H-A, Liu C-Y, Wei S-Y et al (2011) Dynamic contrast-enhanced MR imaging measurement of vertebral bone marrow perfusion may be indicator of outcome of acute myeloid leukemia patients in remission. Radiology 258(3):821–831

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M. Scheel is supported by the “Friedrich C. Luft” Clinical Scientist Pilot Program funded by Volkswagen Foundation and Charité Foundation.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Issever.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acu, K., Scheel, M. & Issever, A.S. Time dependency of bone density estimation from computed tomography with intravenous contrast agent administration. Osteoporos Int 25, 535–542 (2014). https://doi.org/10.1007/s00198-013-2440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2440-4

Keyword

Navigation