Log in

Skew-symmetric splitting of high-order central schemes with nonlinear filters for computational aeroacoustics turbulence with shocks

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A class of high-order nonlinear filter schemes by Yee et al. (J Comput Phys 150:199–238, 1999), Sjögreen and Yee (J Comput Phys 225:910–934, 2007), and Kotov et al. (Commun Comput Phys 19:273–300, 2016; J Comput Phys 307:189–202, 2016) is examined for long-time integrations of computational aeroacoustics (CAA) turbulence applications. This class of schemes was designed for an improved nonlinear stability and accuracy for long-time integration of compressible direct numerical simulation and large eddy simulation computations for both shock-free turbulence and turbulence with shocks. They are based on the skew-symmetric splitting version of the high-order central base scheme in conjunction with adaptive low-dissipation control via a nonlinear filter step to help with stability and accuracy capturing at shock-free regions as well as in the vicinity of discontinuities. The central dispersion-relation-preserving schemes as well as classical central schemes of arbitrary orders fit into the framework of skew-symmetric splitting of the inviscid flux derivatives. Numerical experiments on CAA turbulence test cases are validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Martín, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006). https://doi.org/10.1016/j.jcp.2006.05.009

    Article  MATH  Google Scholar 

  2. Fu, L., Hu, X.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016). https://doi.org/10.1016/j.jcp.2015.10.037

    Article  MathSciNet  MATH  Google Scholar 

  3. Subramaniam, A., Wong, M.L., Lele, S.K.: A high-order and high-resolution nonlinear weighted compact scheme for compressible flows involving shocks and turbulence. 23rd AIAA Computational Fluid Dynamics Conference, Denver, CO, AIAA Paper 2017-4108 (2017). https://doi.org/10.2514/6.2017-4108

  4. Pirozzoli, S.: Numerical methods for high-speed flows. Ann. Rev. Fluid Mech. 43(1), 163–194 (2011). https://doi.org/10.1146/annurev-fluid-122109-160718

    Article  MathSciNet  MATH  Google Scholar 

  5. Yee, H.C., Sandham, N.D., Djomehri, M.J.: Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150(1), 199–238 (1999). https://doi.org/10.1006/jcph.1998.6177

    Article  MathSciNet  MATH  Google Scholar 

  6. Sjögreen, B., Yee, H.C.: Multiresolution wavelet based adaptive numerical dissipation control for high order methods. J. Sci. Comput. 20(2), 211–255 (2004). https://doi.org/10.1023/b:jomp.0000008721.30071.e4

    Article  MathSciNet  MATH  Google Scholar 

  7. Yee, H.C., Sjögreen, B.: Development of low dissipative high order filter schemes for multiscale Navier–Stokes/MHD systems. J. Comput. Phys. 225, 910–934 (2007). https://doi.org/10.1016/j.jcp.2007.01.012

    Article  MathSciNet  MATH  Google Scholar 

  8. Kotov, D.V., Yee, H.C., Wray, A.A., Hadjadj, A., Sjögreen, B.: High order numerical methods for the dynamic SGS model of turbulent flows with shocks. Commun. Comput. Phys. 19, 273–300 (2016). https://doi.org/10.4208/cicp.211014.040915a

    Article  MathSciNet  MATH  Google Scholar 

  9. Kotov, D.V., Yee, H.C., Wray, A.A., Sjögreen, B., Kritsuk, A.G.: Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows. J. Comput. Phys. 307, 189–202 (2016). https://doi.org/10.1016/j.jcp.2015.11.029

    Article  MathSciNet  MATH  Google Scholar 

  10. Yee, H.C., Vinokur, M., Djomehri, M.J.: Entropy splitting and numerical dissipation. J. Comput. Phys. 162(1), 33–81 (2000). https://doi.org/10.1006/jcph.2000.6517

    Article  MathSciNet  MATH  Google Scholar 

  11. Sjögreen, B., Yee, H.C., Kotov, D.: Skew-symmetric splitting and stability of high order central schemes. J. Phys.: Conf. Ser. 837, 012019 (2017). https://doi.org/10.1088/1742-6596/837/1/012019

    Article  Google Scholar 

  12. Sjögreen, B., Yee, H.C.: Skew-symmetric splitting for multiscale gas dynamics and MHD turbulence flows. J. Sci. Comput. (2018)

  13. Sjögreen, B., Yee, H.C.: On high order entropy conservative numerical flux for multiscale gas dynamics and MHD simulations. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, pp. 407–421. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65870-4_29

    MATH  Google Scholar 

  14. Sjögreen, B., Yee, H.C.: High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows. J. Comput. Phys. 364, 153–185 (2018). https://doi.org/10.1016/j.jcp.2018.02.003

    Article  MathSciNet  MATH  Google Scholar 

  15. Sjögreen, B., Yee, H.C.: Accuracy consideration by DRP schemes for DNS and LES of compressible flow computations. Comput. Fluids 159, 123–136 (2017). https://doi.org/10.1016/j.compfluid.2017.09.017

    Article  MathSciNet  MATH  Google Scholar 

  16. Yee, H.C., Sjögreen, B.: High order filter methods for wide range of compressible flow speeds. In: Lecture Notes in Computational Science and Engineering, vol. 76, pp. 327–337. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-15337-2_30

    Google Scholar 

  17. Harten, A.: The artificial compression method for computation of shocks and contact discontinuities: III. Self-adjusting hybrid schemes. Math. Comp. 32, 363–389 (1978). https://doi.org/10.1090/S0025-5718-1978-0489360-X

    Article  MathSciNet  MATH  Google Scholar 

  18. Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys. 1, 119–143 (1966). https://doi.org/10.1016/0021-9991(66)90015-5

    Article  MATH  Google Scholar 

  19. Blaisdell, G.A., Spyropoulos, E.T., Qin, J.H.: The effect of the formulation of nonlinear terms on aliasing errors in spectral methods. Appl. Number. Math. 21(3), 207–219 (1996). https://doi.org/10.1016/0168-9274(96)00005-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows. J. Comput. Phys. 161, 114–139 (2000). https://doi.org/10.1006/jcph.2000.6492

    Article  MathSciNet  MATH  Google Scholar 

  21. Sjögreen, B., Yee, H.C.: On skew-symmetric splitting and entropy conservation schemes for the Euler equations. In: Numerical Mathematics and Advanced Applications 2009, pp. 817–827. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-11795-4_88

    Chapter  Google Scholar 

  22. Sandham, N.D., Li, Q., Yee, H.C.: Entropy splitting for high-order numerical simulation of compressible turbulence. J. Comput. Phys. 178, 307–322 (2002). https://doi.org/10.1006/jcph.2002.7022

    Article  MATH  Google Scholar 

  23. Emmert, T., Lafon, P., Bailly, C.: Numerical study of self-induced transonic flow oscillations behind a sudden duct enlargement. Phys. Fluids 21(10), 106105 (2009). https://doi.org/10.1063/1.3247158

    Article  MATH  Google Scholar 

  24. Yee, H.C., Sjögreen, B.: Recent developments in accuracy and stability improvement of nonlinear filter methods for DNS and LES of compressible flows. Comput. Fluids 169, 331–348 (2018). https://doi.org/10.1016/j.compfluid.2017.08.028

    Article  MathSciNet  MATH  Google Scholar 

  25. Yee, H.C., Sjögreen, B.: Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems. Comput. Fluids 37(5), 593–619 (2008). https://doi.org/10.1016/j.compfluid.2007.07.015

    Article  MathSciNet  MATH  Google Scholar 

  26. Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227(3), 1676–1700 (2008). https://doi.org/10.1016/j.jcp.2007.09.020

    Article  MathSciNet  MATH  Google Scholar 

  27. Pirozzoli, S.: Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229(19), 7180–7190 (2010). https://doi.org/10.1016/j.jcp.2010.06.006

    Article  MathSciNet  MATH  Google Scholar 

  28. Sjögreen, B., Yee, H.C.: Two Decades Old Entropy Stable Method for the Euler Equations Revisited. Proceedings of the ICOSAHOM-2018, July 9–13, London, UK (2018)

  29. Tam, C.K.W.: A CAA primer for practicing engineers. Technical Report AEDC-TR-08-2, Arnold Engineering Development Center, Arnold Air Force Base (2008)

  30. De Roeck, W., Desmet, W., Baelmans, M., Sas, P.: An overview of high-order finite difference schemes for computational aeroacoustics. Proceedings of the International Conference on Noise and Vibration Engineering, pp. 353–368 (2004)

  31. Tam, C.K.W.: Computational Aeroacoustics: A Wave Number Approach. Cambridge Aerospace Series. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9780511802065

  32. Brambley, E.J.: Optimized finite-difference (DRP) schemes perform poorly for decaying or growing oscillations. J. Comput. Phys. 324, 258–274 (2016). https://doi.org/10.1016/j.jcp.2016.08.003

    Article  MathSciNet  MATH  Google Scholar 

  33. Haras, Z., Ta’asan, S.: Finite difference schemes for long-time integration. J. Comput. Phys. 114, 265–279 (1994). https://doi.org/10.1006/jcph.1994.1165

    Article  MathSciNet  MATH  Google Scholar 

  34. Yee, H.C., Klopfer, G.H., Montagné, J.-L.: High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows. J. Comput. Phys. 88(1), 31–61 (1990). https://doi.org/10.1016/0021-9991(90)90241-R

    Article  MathSciNet  MATH  Google Scholar 

  35. Kotov, D.V., Yee, H.C., Panesi, M., Prabhu, D.K., Wray, A.A.: Computational challenges for simulations related to the NASA electric arc shock tube (EAST) experiments. J. Comput. Phys. 269, 215–233 (2014). https://doi.org/10.1016/j.jcp.2014.03.021

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, S., Jiang, S., Zhang, Y.-T., Shu, C.-W.: The mechanism of sound generation in the interaction between a shock wave and two counter-rotating vortices. Phys. Fluids 21(7), 076101 (2009). https://doi.org/10.1063/1.3176473

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by Ames Research Center (Grant No. 1009492.02.01.01.05.02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Yee.

Additional information

Communicated by C.-H. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sjögreen, B., Yee, H.C. & Wray, A.A. Skew-symmetric splitting of high-order central schemes with nonlinear filters for computational aeroacoustics turbulence with shocks. Shock Waves 29, 1117–1132 (2019). https://doi.org/10.1007/s00193-019-00925-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00925-z

Keywords

Navigation