Log in

Robust Kalman filtering with constraints: a case study for integrated navigation

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

When certain constraints in the kinematic state parameters of a multi-sensor navigation system exist, they should be taken into account for the improvement of the positioning accuracy and reliability. In this paper, two types of robust estimators for integrated and two stages of Kalman filtering with state parameter constraints are derived based on the generalized maximum likelihood Lagrangian condition, respectively. The properties of the two estimators are discussed. The changes of the state estimates and their covariance matrices as well as the residual vector caused by the constraints are derived and analyzed. It is shown by a simulated example that the precision of the state estimates provided by the Kalman filtering with constraints is better than that provided by the Kalman filtering without considering the state parameter constraints; and the robust Kalman filtering with constraints further improves the reliability and robustness of the state estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alouani AT, Blair WD (1993) Use of a kinematic constraint in tracking constant speed, maneuvering targets. IEEE Trans Automat Control 38(7): 1107–1111

    Article  Google Scholar 

  • Chia T, Chow P, Chizeck HJ (1991) Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans Biomed Eng 38(5): 429–442

    Article  Google Scholar 

  • Doran HE (1992) Constraining Kalman filter and smoothing estimates to satisfy time-varying restrictions. Rev Econ Stat 74(3): 568–572

    Article  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics. The approach based on influence functions. Wiley, New York

    Google Scholar 

  • Hekimoglu S (2005) Increasing reliability of the test for outliers whose magnitudes is small. Surv Rev 38: 274–285

    Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35: 73–101

    Article  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  Google Scholar 

  • Julier SJ, LaViola J (2007) On Kalman On Kalman filtering with nonlinear equality constraints. IEEE Trans Signal Process 55(6): 2774–2784

    Article  Google Scholar 

  • Koch KR (1987) Parameter estimation and hypothesis testing in linear model. Springer, New York

    Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. 2. Springer, Berlin

    Google Scholar 

  • Koch KR, Yang Y (1998) Robust Kalman filter for rank deficient observation model. J Geod 72(8): 436–441

    Article  Google Scholar 

  • Ou J (1999) Quasi-accurate detection of gross errors (QUAD). Acta Geod Cartogr Sin 28(1): 15–20

    Google Scholar 

  • Ou J, Chai Y, Yuan Y (2004) Adaptive filtering for kinematic positioning by selection of the parameter weights. In: Zhu Y, Sun H (eds) Progress in geodesy and geodynamics. Hubei Science & Technology Press, pp 816–823

  • Petovello MG, O’Keefe K, Lachapelle G, Cannon ME (2009) Consideration of time-correlated errors in a Kalman filter applicable to GNSS. J Geod 83: 51–56

    Article  Google Scholar 

  • Pope A (1976) The statistics of residuals and outlier detection of outliers. NOAA Technical Report, Rockville

    Google Scholar 

  • Ren C, Ou J, Yuan Y (2005) Application of adaptive filtering by selecting the parameter weight factor in precise kinematic GPS positioning. Prog Nat Sci 15(1): 41–46

    Article  Google Scholar 

  • Schaffrin B (1995) On some alternatives to Kalman filtering. In: Sanso F (eds) Geodetic theory today. Springer, Berlin, pp 235–245

    Google Scholar 

  • Schwarz KP, Cannon ME, Wong RVC (1989) A comparison of GPS kinematic models for determination of position and velocity along a trajectory. Manuscr Geod 14(6): 345–353

    Google Scholar 

  • Simon D, Chia TL (2002) Kalman filtering with state equality constraints. IEEE Trans Aerosp Electron Syst 39(1): 128–136

    Article  Google Scholar 

  • Simon D, Simon DL (2004) Aircraft turbofan engine health estimation using constrained Kalman Filtering. J Eng Gas Turbines Power 126(1): 1–6

    Article  Google Scholar 

  • Tahk M, Speyer JL (1990) Target tracking problems subject to kinematic constraints. IEEE Trans Automat Control 35(3): 324–326

    Article  Google Scholar 

  • Wen W, Durrant-Whyte HF (1992) Model-based multi-sensor data fusion. In: Proceedings of the 1992 IEEE international conference on robotics and automation, IEEE. IEEE Press, New York, pp 1720–1726

  • Wiśniewski Z (1999) Concept of robust estimation of variance coefficient (VR-estimation). Boll Geod Sci Affin 3: 291–310

    Google Scholar 

  • Wiśniewski Z (2008) Estimation of parameters in a split functional model of geodetic observations (M-split estimation). J Geod. doi:10.1007/s00190-008-0241-x

  • **e L, Soh YC (1994) Robust Kalman filtering for uncertain system. Syst Control Lett 22: 122–129

    Article  Google Scholar 

  • Xu PL (1989) Statistical criteria for robust methods. ITC JNo 1: 37–40

    Google Scholar 

  • Xu P (1989) On robust estimation with correlated observations. Bull Geod 63: 237–252

    Article  Google Scholar 

  • Xu PL (1993) Consequences of constant parameters and confidence intervals of robust estimation. Boll Geod Sci Affin 52: 231–249

    Google Scholar 

  • Xu P (2005) Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J Geod 79: 146–159

    Article  Google Scholar 

  • Yang Y (1991) Robust Bayesian estimation. Bull Geod 65: 145–150

    Article  Google Scholar 

  • Yang Y (1992) Robustifying collocation. Manuscr Geod 17: 21–28

    Google Scholar 

  • Yang Y (1993) Robust estimation and applications. Bayi Publishing House, Bei**g

    Google Scholar 

  • Yang Y (1994) Robust estimation for dependent observations. Manuscr Geod 19: 10–17

    Google Scholar 

  • Yang Y (1997) Robust Kalman filter for dynamical system. J Zhengzhou Inst Surv Mapp 14(2): 79–84

    Google Scholar 

  • Yang Y (2003) Properties of the adaptive filtering for kinematic positioning. Acta Geod Cartogr Sin 32(3): 189–192

    Google Scholar 

  • Yang Y (2006) Adaptive navigation and kinematic positioning. Press of Surveying and Map**, Bei**g

    Google Scholar 

  • Yang Y, Cui X (2008) Adaptively robust filter with multi adaptive factors. Surv Rev 40(309): 260–270

    Article  Google Scholar 

  • Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic geodetic positioning. J Geod 75(2/3): 109–116

    Article  Google Scholar 

  • Yang Y, Song L, Xu T (2002) Robust parameter estimation for correlated geodetic observations. Selected Papers for english edition. Acta Geod Cartogr Sin 31(2): 18–24

    Google Scholar 

  • Zhou J, Huang Y, Yang Y, Ou J (1997) Robust least squares methods. Publishing House of Huazhong University of Science and Technology, Wuhan

    Google Scholar 

  • Zhu J (1996) Robustness and the robust estimate. J Geod 70: 586–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanxi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Gao, W. & Zhang, X. Robust Kalman filtering with constraints: a case study for integrated navigation. J Geod 84, 373–381 (2010). https://doi.org/10.1007/s00190-010-0374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0374-6

Keywords

Navigation