Log in

Poisson QMLE for change-point detection in general integer-valued time series models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We consider together the retrospective and the sequential change-point detection in a general class of integer-valued time series. The conditional mean of the process depends on a parameter \(\theta ^*\) which may change over time. We propose procedures which are based on the Poisson quasi-maximum likelihood estimator of the parameter, and where the updated estimator is computed without the historical observations in the sequential framework. For both the retrospective and the sequential detection, the test statistics converge to some distributions obtained from the standard Brownian motion under the null hypothesis of no change and diverge to infinity under the alternative; that is, these procedures are consistent. Some results of simulations as well as real data application are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad A, Francq C (2016) Poisson QMLE of count time series models. J Time Ser Anal 37(3):291–314

    Article  MathSciNet  Google Scholar 

  • Aknouche A, Bendjeddou S, Touche N (2018) Negative binomial quasi-likelihood inference for general integer-valued time series models. J Time Ser Anal 39(2):192–211

    Article  MathSciNet  Google Scholar 

  • Bardet JM, Kengne W (2014) Monitoring procedure for parameter change in causal time series. J Multivar Anal 125:204–221

    Article  MathSciNet  Google Scholar 

  • Basseville M, Nikiforov IV et al (1993) Detection of abrupt changes: theory and application, vol 104. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Billingsley P (1968) Convergence of probability measures. Wiley, London

    MATH  Google Scholar 

  • Chow Y (1960) A martingale inequality and the law of large numbers. Proc Am Math Soc 11(1):107–111

    Article  MathSciNet  Google Scholar 

  • Chu CSJ, Stinchcombe M, White H (1996) Monitoring structural change. Econom J Econ Soc 64:1045–1065

    MATH  Google Scholar 

  • Csörgo M, Csörgo S, Horváth L, Mason DM (1986) Weighted empirical and quantile processes. Ann Prob 41:31–85

    MathSciNet  MATH  Google Scholar 

  • Diop ML, Kengne W (2017) Testing parameter change in general integer-valued time series. J Time Ser Anal 38(6):880–894

    Article  MathSciNet  Google Scholar 

  • Diop ML, Kengne W (2021) Piecewise autoregression for general integer-valued time series. J Stat Plan Inference 211:271–286

    Article  MathSciNet  Google Scholar 

  • Doukhan P, Kengne W (2015) Inference and testing for structural change in general Poisson autoregressive models. Electron J Stat 9:1267–1314

    Article  MathSciNet  Google Scholar 

  • Fokianos K, Rahbek A, Tjøstheim D (2009) Poisson autoregression. J Am Stat Assoc 104(488):1430–1439

    Article  MathSciNet  Google Scholar 

  • Grunwald GK, Hyndman RJ, Tedesco L, Tweedie RL (2000) Theory & methods: non-gaussian conditional linear ar (1) models. Aust N Z J Stat 42(4):479–495

    Article  MathSciNet  Google Scholar 

  • Kang J, Lee S (2014) Parameter change test for Poisson autoregressive models. Scand J Stat 41(4):1136–1152

    Article  MathSciNet  Google Scholar 

  • Kang J, Song J (2017) Score test for parameter change in Poisson autoregressive models. Econ Lett 160:33–37

    Article  MathSciNet  Google Scholar 

  • Kang J, Song J (2020) A robust approach for testing parameter change in Poisson autoregressive models. J Korean Stat Soc 49(4):1285–1302

    Article  MathSciNet  Google Scholar 

  • Kengne W, Ngongo IS (2020) Inference for nonstationary time series of counts with application to change-point problems. ar**v preprint ar**v:2005.00934

  • Kirch C, Kamgaing JT (2015) On the use of estimating functions in monitoring time series for change points. J Stat Plan Inference 161:25–49

    Article  MathSciNet  Google Scholar 

  • Kirch C, Tajduidje Kamgaing J (2016) Detection of change points in discrete valued time series. In: Holan SA, Lund RB, Ravishanker N, Davis RA (eds) Handbook of discrete valued time series. CRC Press, Boca Raton

    Google Scholar 

  • Kirch C, Weber S (2018) Modified sequential change point procedures based on estimating functions. Electron J Stat 12(1):1579–1613

    Article  MathSciNet  Google Scholar 

  • Lee S, Ha J, Na O, Na S (2003) The cusum test for parameter change in time series models. Scand J Stat 30(4):781–796

    Article  MathSciNet  Google Scholar 

  • Leisch F, Hornik K, Kuan CM (2000) Monitoring structural changes with the generalized fluctuation test. Econom Theory 16(06):835–854

    Article  MathSciNet  Google Scholar 

  • Weiß CH (2011) Detecting mean increases in Poisson INAR (1) processes with EWMA control charts. J Appl Stat 38(2):383–398

    Article  MathSciNet  Google Scholar 

  • Weiß CH, Testik MC (2011) The Poisson INAR (1) CUSUM chart under overdispersion and estimation error. IIE Trans 43(11):805–818

    Article  Google Scholar 

  • Weiß CH, Feld MHJ, Mamode Khan N, Sunecher Y (2019) INARMA modeling of count time series. Stats 2(2):284–320

    Article  Google Scholar 

  • Yontay P, Weiß CH, Testik MC, Pelin Bayindir Z (2013) A two-sided cumulative sum chart for first-order integer-valued autoregressive processes of Poisson counts. Qual Reliab Eng Int 29(1):33–42

    Article  Google Scholar 

  • Zeileis A, Leisch F, Kleiber C, Hornik K (2005) Monitoring structural change in dynamic econometric models. J Appl Econom 20(1):99–121

    Article  MathSciNet  Google Scholar 

  • Zhu F (2011) A negative binomial integer-valued GARCH model. J Time Ser Anal 32(1):54–67

    Article  MathSciNet  Google Scholar 

  • Zhu F (2012) Modeling time series of counts with COM-Poisson INGARCH models. Math Comput Model 56(9–10):191–203

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor, the Associate Editor and the two anonymous Referees for many relevant suggestions and comments which helped to improve the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Kengne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. L. Diop and W. Kengne: Supported by the MME-DII center of excellence (ANR-11-LABEX-0023-01) and the ANR BREAKRISK: ANR-17-CE26-0001-01. W. Kengne: Developed within the CY Initiative of Excellence (Grant “Investissements d’Avenir” ANR-16-IDEX-0008), Project “EcoDep” PSI-AAP2020-0000000013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diop, M.L., Kengne, W. Poisson QMLE for change-point detection in general integer-valued time series models. Metrika 85, 373–403 (2022). https://doi.org/10.1007/s00184-021-00834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-021-00834-1

Keywords

Mathematics Subject Classification

Navigation