Log in

Bayesian lasso binary quantile regression

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, a Bayesian hierarchical model for variable selection and estimation in the context of binary quantile regression is proposed. Existing approaches to variable selection in a binary classification context are sensitive to outliers, heteroskedasticity or other anomalies of the latent response. The method proposed in this study overcomes these problems in an attractive and straightforward way. A Laplace likelihood and Laplace priors for the regression parameters are proposed and estimated with Bayesian Markov Chain Monte Carlo. The resulting model is equivalent to the frequentist lasso procedure. A conceptional result is that by doing so, the binary regression model is moved from a Gaussian to a full Laplacian framework without sacrificing much computational efficiency. In addition, an efficient Gibbs sampler to estimate the model parameters is proposed that is superior to the Metropolis algorithm that is used in previous studies on Bayesian binary quantile regression. Both the simulation studies and the real data analysis indicate that the proposed method performs well in comparison to the other methods. Moreover, as the base model is binary quantile regression, a much more detailed insight in the effects of the covariates is provided by the approach. An implementation of the lasso procedure for binary quantile regression models is available in the R-package bayesQR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alhamzawi R, Yu K (2011) Power prior elicitation in Bayesian quantile regression. J Probab Stat. doi:10.1155/2011/874907

  • Alhamzawi R, Yu K (2013) Conjugate priors and variable selection for Bayesian quantile regression. Comput Stat Data Anal 64:209–219

    Google Scholar 

  • Alhamzawi R, Yu K, Benoit DF (2012) Bayesian adaptive Lasso quantile regression. Stat Model 12:279–297

    Article  Google Scholar 

  • Alhamzawi R, Yu K, Pan J (2011) Prior elicitation in Bayesian quantile regression for longitudinal data. J Biom Biostat 2:115

    Google Scholar 

  • Andrews DF, Mallows CL (1974) Scale mixtures of normal distributions. J R Stat Soc Series B Methodol 36:99–102

    MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Shephard N (2001) Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J R Stat Soc Series B Stat Methodol 63:167–241

    Article  MathSciNet  MATH  Google Scholar 

  • Benoit DF, Van den Poel D (2012) Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution. J Appl Econom 27:1174–1188

    Google Scholar 

  • Dunson DB, Taylor JA (2005) Approximate Bayesian inference for quantiles. Nonparametr Stat 17:385–400

    Article  MathSciNet  MATH  Google Scholar 

  • Florios K, Skouras S (2008) Exact computation of max weighted score estimators. J Econom 146:86–91

    Article  MathSciNet  Google Scholar 

  • Geweke J (1991) Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints. In: Proceedings of the 23rd symposium on the interface, pp 571–578

  • Hoti F, Sillanpää MJ (2006) Bayesian map** of genotype 3 expression interactions in quantitative and qualitative traits. Heredity 97:4–18

    Article  Google Scholar 

  • Koenker R (2004) Quantile regression for longitudinal data. J Multivar Anal 91:74–89

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker RW, D’Orey V (1987) Algorithm AS 229: computing regression quantiles. Appl Stat 36:383–393

    Article  Google Scholar 

  • Koenker R, Machado J (1999) Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 94:1296–1310

    Article  MathSciNet  MATH  Google Scholar 

  • Kordas G (2006) Smoothed binary regression quantiles. J Appl Econom 21:387–407

    Article  MathSciNet  Google Scholar 

  • Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81:1565–1578

    Article  MathSciNet  MATH  Google Scholar 

  • Lancaster T, Jun SJ (2010) Bayesian quantile regression methods. J Appl Econom 25:287–307

    Article  MathSciNet  Google Scholar 

  • Li Q, ** R, Lin N (2010) Bayesian regularized quantile regression. Bayesian Anal 5:1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Zhu J (2008) L1-norm quantile regression. J Comput Graph Stat 17:163–185

    Article  Google Scholar 

  • Manski CF (1975) Maximum score estimation of the stochastic utility model of choice. J Econom 3:205–228

    Article  MathSciNet  MATH  Google Scholar 

  • Manski CF (1985) Semiparametric analysis of discrete response: asymptotic properties of the maximum score estimator. J Econom 27:313–333

    Article  MathSciNet  MATH  Google Scholar 

  • Michael JR, Schucany WR, Haas RW (1976) Generating random variates using transformations with multiple roots. Am Stat 30:88–90

    MATH  Google Scholar 

  • Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103:681–686

    Article  MathSciNet  MATH  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. http://www.R-project.org

  • Sun W, Ibrahim JG (2010) Genomewide multiple-loci map** in experimental crosses by iterative adaptive penalized regression. Genetics 185:349–359

    Article  Google Scholar 

  • Tibshirani R (1996) Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Series B Methodol 58:267–288

    MathSciNet  MATH  Google Scholar 

  • Tsionas EG (2003) Bayesian quantile inference. J Stat Comput Simul 73:659–674

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Li G, Jiang G (2007) Robust regression shrinkage and consistent variable selection through the LAD-Lasso. J Bus Econ Stat 25:347–355

    Article  MathSciNet  Google Scholar 

  • Wu Y, Liu Y (2009) Variable selection in quantile regression. Stat Sin 19:801–817

    MATH  Google Scholar 

  • Yi N, Xu S (2008) Bayesian LASSO for quantitative trait loci map**. Genetics 179:1045–1055

    Article  Google Scholar 

  • Yu K, Lu Z, Stander J (2003) Quantile regression: applications and current research area. Statistician 52:331–350

    MathSciNet  Google Scholar 

  • Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54:437–447

    Article  MathSciNet  MATH  Google Scholar 

  • Yu K, Stander J (2007) Bayesian analysis of a Tobit quantile regression model. J Econom 137:260–276

    Article  MathSciNet  Google Scholar 

  • Zheng S (2012) QBoost: predicting quantiles with boosting for regression and binary classification. Expert Syst Appl 39:1687–1697

    Article  Google Scholar 

  • Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Alhamzawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoit, D.F., Alhamzawi, R. & Yu, K. Bayesian lasso binary quantile regression. Comput Stat 28, 2861–2873 (2013). https://doi.org/10.1007/s00180-013-0439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0439-0

Keywords

Navigation