Log in

Edge trimming of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: effects of tool orientations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The superior properties make carbon fiber-reinforced plastic (CFRP) composites attractive in many applications. After CFRPs’ molding processes, additional machining processes are needed to produce final functional shapes with dimensional precision. Edge trimming is the primary process to cut the edge of CFRP composites. To reduce or further solve the problems in traditional machining processes, edge trimming of CFRP composites with rotary ultrasonic machining (RUM) has been proposed and conducted in this investigation. In RUM edge trimming processes, two different tool orientations (RUM edge trimming with tool end face and RUM edge trimming with tool side face) can be performed. The comparisons of machining performance and machined surface quality between these two different RUM edge trimming processes have been conducted. Smaller ultrasonic vibration amplitude in RUM using tool end face or larger ultrasonic vibration amplitude in RUM using tool side face produces smaller surface roughness. Lower feeding-directional cutting force, lower normal cutting force, and lower resultant force are generated in the process using tool side face. RUM using tool end face produces smaller surface roughness, smaller debris width, microcracking, flowed matrix on machined CFRP surfaces, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jia Z, Su Y, Niu B, Zhang B, Wang F (2016) The interaction between the cutting force and induced sub-surface damage in machining of carbon fiber-reinforced plastics. J Reinf Plast Compos 35(9):712–726

    Article  Google Scholar 

  2. Cong WL, Pei ZJ, Deines TW, Liu DF, Treadwell C (2013) Rotary ultrasonic machining of CFRP/Ti stacks using variable feedrate. Compos Part B 52:303–310

    Article  Google Scholar 

  3. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121

    Article  Google Scholar 

  4. Krishnaraj V, Prabukarthi A, Ramanathan A, Elanghovan N, Kumar MS, Zitoune R, Davim JP (2012) Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos Part B 43(4):1791–1799

    Article  Google Scholar 

  5. Karpat Y, Polat N (2013) Mechanistic force modeling for milling of carbon fiber reinforced polymers with double helix tools. CIRP Ann Manuf Technol 62(1):95–98

    Article  Google Scholar 

  6. Haddad M, Zitoune R, Eyma F, Castanie B (2014) Study of the surface defects and dust generated during trimming of CFRP: influence of tool geometry, machining parameters and cutting speed range. Compos A: Appl Sci Manuf 66:142–154

    Article  Google Scholar 

  7. Haddad M, Zitoune R, Bougherara H, Eyma F, Castanié B (2014) Study of trimming damages of CFRP structures in function of the machining processes and their impact on the mechanical behavior. Compos Part B 57:136–143

    Article  Google Scholar 

  8. Cong WL, Ning FD (2015) Chapter 2 Rotary ultrasonic machining of CFRP composites. In: Davim JP (ed) Machinability of fibre-reinforced plastics. Walter de Gruyter GmbH & Co KG., Berlin, pp 31–81

    Google Scholar 

  9. Zhang JH, Zhao Y, Tian FQ, Zhang S, Guo LS (2015) Kinematics and experimental study on ultrasonic vibration-assisted micro end grinding of silica glass. Int J Adv Manuf Technol 78(9–12):1893–1904

    Google Scholar 

  10. Wang JJ, Zhang JF, Feng PF, Guo P (2017) Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: a critical review. Ceram Int 44:1227–1239

    Article  Google Scholar 

  11. Wang JJ, Zhang CL, Feng PF, Zhang JF (2016) A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass. Int J Adv Manuf Technol 83:347–355

    Article  Google Scholar 

  12. Wang JJ, Feng PF, Zhang JF, Zhang CL, Pei ZJ (2016) Modeling the dependency of edge chip** size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials. Int J Mach Tools Manuf 101:18–27

    Article  Google Scholar 

  13. Wang JJ, Zha HT, Feng PF, Zhang JF (2016) On the mechanism of edge chip** reduction in rotary ultrasonic drilling: a novel experimental method. Precis Eng 44:231–235

    Article  Google Scholar 

  14. Feng PF, Wang JJ, Zhang JF, Zheng JZ (2017) Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites. Ceram Int 43(1):791–799

    Article  Google Scholar 

  15. Cong WL, Pei ZJ, Feng Q, Deines TW, Treadwell C (2012) Rotary ultrasonic machining of CFRP: a comparison with twist drilling. J Reinf Plast Compos 31(5):313–321

    Article  Google Scholar 

  16. Ning FD, Cong WL, Pei ZJ, Treadwell C (2016) Rotary ultrasonic machining of CFRP: a comparison with grinding. Ultrasonics 66:125–132

    Article  Google Scholar 

  17. Ning FD, Wang H, Cong WL, Fernando PKSC (2017) A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. Ultrasonics 76:44–51

    Article  Google Scholar 

  18. Cong WL, Pei ZJ, Sun X, Zhang CL (2014) Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force. Ultrasonics 54(2):663–675

    Article  Google Scholar 

  19. Colligan K, Ramulu M (1992) The effect of edge trimming on composite surface plies. Manuf Rev 5(4):274–283

    Google Scholar 

  20. Janardhan P, Sheikh-Ahmad J, Cheraghi H (2006) Edge trimming of CFRP with diamond interlocking tools (No. 2006-01-3173). SAE Technical Paper

  21. Sheikh-Ahmad J, Sridhar G (2002) Edge trimming of CFRP composites with diamond coated tools: edge wear and surface characteristics (No. 2002–01-1526). SAE Technical Paper

  22. Ning FD, Cong WL, Hu YB, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51(4):451–462

    Article  Google Scholar 

  23. Black JT, Kohser RA (2017) DeGarmo’s materials and processes in manufacturing. Wiley, Hoboken

    Google Scholar 

  24. Cong WL, Pei ZJ, Mohanty N, Van Vleet E, Treadwell C (2011) Vibration amplitude in rotary ultrasonic machining: a novel measurement method and effects of process variables. J Manuf Sci Eng 133(3):034501

    Article  Google Scholar 

  25. Ning FD, Cong WL, Wang H, Hu YB, Hu ZL, Pei ZJ (2017) Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction. Int J Adv Manuf Technol 92(1–4):1217–1229

    Article  Google Scholar 

  26. Wang H, Ning FD, Hu YB, Fernando PKSC, Pei ZJ, Cong WL (2016) Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: effects of tool variables. Adv Mech Eng 8(9):1687814016670284

    Google Scholar 

  27. Wang H, Cong WL, Ning FD, Hu YB (2018) A study on the effects of machining variables in surface grinding of CFRP composites using rotary ultrasonic machining. Int J Adv Manuf Technol 95(9–12):3651–3663. https://doi.org/10.1007/s00170-017-1468-6

    Article  Google Scholar 

  28. Wang H, Hu YB, Ning FD, Li YZ, Zhang M, Cong WL, Smallwood S (2017) Surface grinding of CFRP composites using rotary ultrasonic machining: effects of ultrasonic power. In: ASME 2017 12th international manufacturing science and engineering conference, pp.V001T02A045-V001T02A045. doi:https://doi.org/10.1115/MSEC2017-2726

  29. Wang H, Ning FD, Hu YB, Cong WL (2018) Surface grinding of CFRP composites using rotary ultrasonic machining: a comparison of workpiece machining orientations. Int J Adv Manuf Technol 95(5–8):2917–2930. https://doi.org/10.1007/s00170-017-1401-z

    Article  Google Scholar 

  30. Jia Z, Fu R, Niu B, Qian B, Bai Y, Wang F (2016) Novel drill structure for damage reduction in drilling CFRP composites. Int J Mach Tools Manuf 110:55–65

    Article  Google Scholar 

  31. Denkena B, Köhler J, Hahmann D (2012) Grinding of steel-ceramic-composites. Int J Abras Technol 5(2):152–174

    Article  Google Scholar 

  32. Ma JW, Jia ZY, Wang FJ, Ning FD (2014) Spindle speed selection for high-speed milling of titanium alloy curved surface. Mater Manuf Process 29(3):364–369

    Article  Google Scholar 

  33. Wang H, Ning FD, Hu YB, Du DP, Cong WL (2017) Surface grinding of CFRP composites using rotary ultrasonic machining: design of experiment on cutting force, torque, and surface roughness. Int J Manuf Res 12(4):461–479. https://doi.org/10.1504/IJMR.2017.10008389

    Article  Google Scholar 

  34. Bhaduri D, Soo SL, Novovic D, Aspinwall DK, Harden P, Waterhouse C, Lucas M (2013) Ultrasonic assisted creep feed grinding of Inconel 718. Proc CIRP 6:615–620

    Article  Google Scholar 

  35. Hu YB, Wang H, Ning FD, Cong WL, Li YZ (2017) Surface grinding of optical BK7/K9 glass using rotary ultrasonic machining: an experimental study. In: ASME 2017 12th international manufacturing science and engineering conference. pp. V001T02A014-V001T02A014. doi:https://doi.org/10.1115/MSEC2017-2780

Download references

Acknowledgments

The work was supported by the National Science Foundation through award CMMI-1538381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilong Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ning, F., Hu, Y. et al. Edge trimming of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: effects of tool orientations. Int J Adv Manuf Technol 98, 1641–1653 (2018). https://doi.org/10.1007/s00170-018-2355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2355-5

Keywords

Navigation