Log in

Using orthogonal experimental method optimizing surface quality of CO2 laser cutting process for PMMA microchannels

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

CO2 laser cutting is an advanced processing technology, which can, according to the computer-aided design graphics, cut a variety of shapes in the surfaces of many polymer sheets. This work aims to analyze the effect of laser power, scanning speed, and processing times on the surface roughness of polymethyl-methacrylate microchannels with CO2 laser LCJG-1290 cutting process. There are several experiments designed by us, and the results were analyzed by orthogonal experimental method. Finally, optimal power, scanning speed, and processing times were obtained, and in the optimal case, the arithmetical mean roughness (Ra) can reach as small as 110 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48(6):609–628

    Article  Google Scholar 

  2. El-Taweel TA, Abdel-Maaboud AM, Azzam BS, Mohammad AE (2009) Parametric studies on the CO2 laser cutting of kevlar-49 composite. Int J Adv Manuf Technol 40(9–10):907–917

    Article  Google Scholar 

  3. Antończak AJ, Nowak M, Szustakiewicz K, Pigłowski J, Abramski KM (2013) The influence of organobentonite clay on CO2 laser grooving of nylon 6 composites. Int J Adv Manuf Technol 69(5–8):1389–1401

    Article  Google Scholar 

  4. Wang XC, Laoui T, Bonse J, Kruth JP, Lauwers B, Froyen L (2002) Direct selective laser sintering of hard metal powders: experimental study and simulation. Int J Adv Manuf Technol 19(5):351–357

    Article  Google Scholar 

  5. Ghosal S, Chaki S (2010) Estimation and optimization of depth of penetration in hybrid CO2 LASER-MIG welding using ANN-optimization hybrid model. Int J Adv Manuf Technol 47(9–12):1149–1157

    Article  Google Scholar 

  6. Pastras G, Fysikopoulos A, Stavropoulos P, Chryssolouris G (2014) An approach to modelling evaporation pulsed laser drilling and its energy efficiency. Int J Adv Manuf Technol 72(9–12):1227–1241

    Article  Google Scholar 

  7. Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2010) Parametric investigation of CO2 laser cutting of 2024-T3 alloy. J Mater Process Technol 210(9):1138–1152

    Article  Google Scholar 

  8. Li H, Fan Y, Kodzius R, Foulds IG (2012) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18(3):373–379

    Article  Google Scholar 

  9. Romoli L, Tantussi G, Dini G (2007) Layered laser vaporization of PMMA manufacturing 3D mould cavities. CIRP Ann Manuf Technol 56(1):209–212

    Article  Google Scholar 

  10. Davim JP, Oliveira C, Barricas N, Conceição M (2008) Evaluation of cutting quality of PMMA using CO2 lasers. Int J Adv Manuf Technol 35(9–10):875–879

    Article  Google Scholar 

  11. Irawan R, Chuan TS, Meng TC, Ming TK (2008) Rapid constructions of microstructures for optical fiber sensors using a commercial CO2 laser system. Open Biomed Eng J 2:28

    Article  Google Scholar 

  12. Madić M, Radovanović M (2012) Comparative modeling of CO2 laser cutting using multiple regression analysis and artificial neural network. Int J Phys Sci 7(16):2422–2430

    Google Scholar 

  13. Kurt M, Kaynak Y, Bagci E, Demirer H, Kurt M (2009) Dimensional analyses and surface quality of the laser cutting process for engineering plastics. Int J Adv Manuf Technol 41(3–4):259–267

    Article  Google Scholar 

  14. Eltawahni HA, Olabi AG, Benyounis KY (2011) Assessment and optimization of CO2 laser cutting process of PMMA[C]//International conference on advances in materials and processing technologies (AMPT2010). AIP Publ 1315(1):1553–1558

    Google Scholar 

  15. Yang CB, Deng CS, Chiang HL (2012) Combining the Taguchi method with artificial neural network to construct a prediction model of a CO2 laser cutting experiment. Int J Adv Manuf Technol 59(9–12):1103–1111

    Article  Google Scholar 

  16. Prakash S, Kumar S (2015) Profile and depth prediction in single-pass and two-pass CO2 laser microchanneling processes. J Micromech Microeng 25(3):035010

    Article  MathSciNet  Google Scholar 

  17. Fatimah S, Ishak M, Aqida SN (2012) CO2 laser cutting of glass fiber reinforce polymer composite[C]//IOP conference series: materials science and engineering. IOP Publ 36(1):012033

    Google Scholar 

  18. Taguchi G, Yokoyama Y (1993) Taguchi methods: design of experiments[M]. Amer Supplier Inst

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, T., zhai, K. et al. Using orthogonal experimental method optimizing surface quality of CO2 laser cutting process for PMMA microchannels. Int J Adv Manuf Technol 88, 2727–2733 (2017). https://doi.org/10.1007/s00170-016-8887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8887-7

Keywords

Navigation