Log in

Energy efficiency techniques in machining process: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The paper presents an overview of the state of the art in energy-efficient techniques in the domain of discrete part manufacturing, focusing on the techniques including energy assessment model for machining process and the energy efficiency analysis and evaluation for machine tools, important components, and machining systems. The main motivation is to review the existing works related to reduce energy consumption in machining processes, to discuss the challenges towards energy-efficient manufacturing, and identify the major barriers from both technologies and approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bin H, Ke X, Kazem A, Sead S (2012) Development of energy-saving optimization for the oval-edging oval pass design using genetic algorithm. Int J Adv Manuf Technol 61:423–429

    Article  Google Scholar 

  2. John P, Konstantinos S, George C (2013) Robust optimization of the energy efficiency of the cold roll forming process. Int J Adv Manuf Technol 69:461–481

    Article  Google Scholar 

  3. Filippi AD, Ippolito R (1981) NC machine tools as electric energy users. Ann CIRP 30(1):323–326

    Article  Google Scholar 

  4. Behrendt T, Zeina A, Min S (2012) Development of an energy consumption monitoring procedure for machine tools. CIRP Ann-Manuf Techn 61:43–46

    Article  Google Scholar 

  5. Eoin OD, Donal OC, Garret EO, Donnell (2013) The development of energy performance indicators within a complex manufacturing facility. Int J Adv Manuf Technol 68:2205–2214

    Article  Google Scholar 

  6. Jeswiet J, Kara S (2008) Carbon emissions and CES in manufacturing. Ann CIRP 57(1):17–20

    Article  Google Scholar 

  7. Draganescu F, Gheorghe M, Doicin CV (2003) Models of machine tool efficiency and specific consumed energy. J Mater Process Technol 141(1):9–15

    Article  Google Scholar 

  8. Dahmus JB, Gutowski TG (2004) An environmental analysis of machining. Proceedings of ASME International Mechanical Engineering Congress and Exposition, pp. 1-10

  9. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. Proceedings of 13th CIRP International Conference on Life Cycle Engineering, pp. 623-627

  10. Balogun VA, Mativenga PT (2013) Modelling of direct energy requirements in mechanical machining processes. J Clean Prod 41:179–186

    Article  Google Scholar 

  11. Karsten S, Eckhard H, Roberto F, Jens K, Sebastian K, Paul W, Nils FN (2012) Energy-using product group analysis—Lot5 machine tools and related machinery. Task5 Report-Technical Analysis BAT and BNAT, pp. 49-52

  12. Dietmair A, Verl A (2009) A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing. Int J Sustain Eng 2(2):123–133

    Article  Google Scholar 

  13. Oda Y, Kawamura Y, Fujishima M (2012) Energy consumption reduction by machining process improvement. Procedia CIRP 4:120–124

    Article  Google Scholar 

  14. Mori M, Fujishima M, Inamasu Y, Oda Y (2011) A study on energy efficiency improvement for machine tools. CIRP Ann-Manuf Techn 60(1):145–148

    Article  Google Scholar 

  15. Fysikopoulos A, Stavropoulos P, Salonitis K, Chryssolouris G (2012) Energy efficiency assessment of laser drilling process. Phys Procedia 39:776–783

    Article  Google Scholar 

  16. Giuseppe I, Giuseppina A, Francesco G, Rosa DL (2012) A sustainability point of view on sheet metal forming operations: material wasting and energy consumption in incremental forming and stam** processes. J Clean Prod 29:255–268

    Google Scholar 

  17. Wang QL, Liu F, Li CB (2013) An integrated method for assessing the energy efficiency of machining workshop. J Clean Prod 52:122–133

    Article  MathSciNet  Google Scholar 

  18. Tönissen S (2009) Power demand of precision. Dissertation, University of California

  19. Srinivasan M, Sheng P (1999) Feature-based process planning for environmentally conscious machining-part 1: microplanning. Robot Cim-Int Manuf 15(3):257–270

    Article  Google Scholar 

  20. Devoldere T, Dewulf W, Deprez W, Willems B, Duflou JR (2007) Improvement potential for energy consumption in discrete part production machines. Proceedings of 14th CIRP International Conference on Life Cycle Engineering, pp. 311–316

  21. Vijayaraghavan A, Dornfeld D (2010) Automated energy monitoring of machine tools. CIRP Ann-Manuf Techn 59:21–24

    Article  Google Scholar 

  22. Le CV, Pang CK, Gan OP, Chee XM, Zhang DH, Luo M, Chan HL, Lewis FL (2013) Classification of energy consumption patterns for energy audit and machine scheduling in industrial manufacturing systems. T I Meas Control 35(5):583–592

    Article  Google Scholar 

  23. Oliver IA, Paul X (2011) Evaluating the use phase energy requirements of a machine tool system. J Clean Prod 19:699–711

    Article  Google Scholar 

  24. Hu SH, Liu F, He Y, Hu T (2012) An on-line approach for energy efficiency monitoring of machine tools. J Clean Prod 27:133–140

    Article  Google Scholar 

  25. Okazaki Y, Mishima N, Ashida K (2004) Microfactory-concept, history, and developments. J Manuf Sci Eng 126(4):837–844

    Article  Google Scholar 

  26. Liow JL (2009) Mechanical micromachining: a sustainable micro-device manufacturing approach. J Clean Prod 17:662–667

    Article  Google Scholar 

  27. Dhupia J, Powalka B, Katz R, Ulsoy AG (2007) Dynamics of the arch-type reconfigurable machine tool. Int J Mach Tool Manufact 47:325–334

    Article  Google Scholar 

  28. Son H, Choi H, Park H (2010) Design and dynamic analysis of an arch-type desktop reconfigurable machine. Int J Mach Tool Manufact 50:575–584

    Article  Google Scholar 

  29. Mpofu K, Tlale NS (2011) Multi-level decision making in reconfigurable machining systems using fuzzy logic. J Manuf Syst 31:103–112

    Article  Google Scholar 

  30. Nokucinga M, Khumbulani M, Modungwa D (2013) Conceptual development of modular machine tools for reconfigurable manufacturing systems: advances in sustainable and competitive manufacturing systems. Lecture Notes in Mechanical Engineering:467-477

  31. Yoon HS, Moon JS, Pham MQ, Lee GB, Ahn SH (2013) Control of machining parameters for energy and cost savings in micro-scale drilling of PCBs. J Clean Prod 54:41–48

    Article  Google Scholar 

  32. Chen SJ, Hinduja S, Barrow G (1989) Automatic tool selection for rough turning operations. Int J Mach Tool Manufact 29(4):535–553

    Article  Google Scholar 

  33. Hinduja S, Sandiford D (2004) An optimum two-tool solution for milling 2½D features from technological and geometric viewpoints. CIRP Ann-Manuf Techn 53(1):77–80

    Article  Google Scholar 

  34. Lee BY, Tarng YS (2000) Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations. J Mater Process Tech 105(1–2):61–66

    Article  Google Scholar 

  35. Choudhury SK, Appa RI (1999) Optimization of cutting parameters for maximizing tool life. Int J Mach Tool Manufact 39(2):343–353

    Article  Google Scholar 

  36. Nafis A, Tomohisa T, Yoshio S (2005) Optimization of cutting parameters for end milling operation by soap based genetic algorithm. Proceedings of 6th International Conference on Mechanical Engineering, pp. 1-5

  37. Mesquita R, Krasteva E, Doytchinov S (1995) Computer-aided selection of optimum machining parameters in multipass turning. Int J Adv Manuf Technol 10(1):19–26

    Article  Google Scholar 

  38. Rajemi MF, Mativenga PT, Aramcharoen A (2010) Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. J Clean Prod 18:1059–1065

    Article  Google Scholar 

  39. Mehrabi MG, Ulsoy AG, Koren Y (2000) Reconfigurable manufacturing systems: key to future manufacturing. J Intell Manuf 11:403–419

    Article  Google Scholar 

  40. Moon YM, Kota S (2002) Generalized kinematic modeling of reconfigurable machine tools. J Mech Design 124:47–51

    Article  Google Scholar 

  41. Koren Y, Ulsoy AG (2002) Vision, principles and impact of reconfigurable manufacturing systems. Powertrain Int 5(3):14–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yingjie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yingjie, Z. Energy efficiency techniques in machining process: a review. Int J Adv Manuf Technol 71, 1123–1132 (2014). https://doi.org/10.1007/s00170-013-5551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5551-3

Keywords

Navigation