Log in

Experimental research on the effects of cavity surface temperature on surface appearance properties of the moulded part in rapid heat cycle moulding process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The influences of the cavity surface temperature just before filling on part surface appearance and texture in rapid heat cycle moulding are investigated. It is observed that the cavity surface temperature just before filling has a very significant influence on part surface appearance. As the cavity surface temperature increases, aesthetic quality of the moulded part can be greatly improved by reducing surface roughness, increasing surface gloss and reducing weld mark. There is a critical cavity surface temperature just before filling for each plastic material. As the cavity surface temperature reaches the critical value, the part surface appearance will reach the optimal level with lowest roughness, highest gloss and without any weld mark. The critical cavity surface temperature on surface gloss and roughness is close to the Vicat softening point of the plastic material. The critical cavity surface temperature on weld mark is 10–20 °C higher than that on surface roughness and gloss. The mechanisms for generating the rough surface of the part moulded with a low cavity surface temperature and improving part surface appearance by increasing cavity surface temperature are disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang GL, Zhao GQ, Li HP, Guan YJ (2009) Research on a new variotherm injection molding technology and its application on the molding of a large LCD panel. Polym-Plast Technol Eng 48(7):671–681

    Article  Google Scholar 

  2. Zhao GQ, Wang GL, Guan YJ, Li HP (2011) Research and application of a new rapid heat cycle molding with electric heating and coolant cooling to improve the surface quality of large LCD TV panels. Polym Adv Technol 22(5):476–487

    Article  Google Scholar 

  3. Chen SC, Minh PS, Chang JA (2011) Gas-assisted mold temperature control for improving the quality of injection molded parts with fiber additives. Int Commun Heat Mass Tran 38(3):304–312

    Article  Google Scholar 

  4. Chen SC, Lin YW, Chien RD, Li HM (2008) Variable mold temperature to improve surface quality of microcellular injection molded parts using induction heating technology. Adv Polym Technol 27(4):224–232

    Article  Google Scholar 

  5. Yao DG, Chen SC, Kim BH (2008) Rapid thermal cycling of injection molds: an overview on technical approaches and applications. Adv Polym Technol 27(4):233–255

    Article  Google Scholar 

  6. Nakao M, Tsuchiya K, Sadamitsu T, Ichikohara Y, Ohba T, Ooi T (2008) Heat transfer in injection molding for reproduction of sub-micron-sized features. Int J Adv Manuf Technol 38:426–432

    Article  Google Scholar 

  7. Bellantone V, Surace R, Trotta G, Fassi I (2012) Replication capability of micro injection moulding process for polymeric parts manufacturing. Int J Adv Manuf Technol. doi:10.1007/s00170-012-4577-2

    Google Scholar 

  8. Theilade UA, Hansen HN (2007) Surface microstructure replication in injection molding. Int J Adv Manuf Technol 33:157–166

    Article  Google Scholar 

  9. Chen M, Yao DG, Kim B (2001) Eliminating flow induced birefringence and minimizing thermally induced residual stresses in injection molded parts. Polym-Plast Technol Eng 40(4):491–503

    Article  Google Scholar 

  10. Kim DH, Kang MH, Chun YH (2001) Development of a new injection molding technology: momentary mold surface heating process. J Inject Mold Technol 5(4):229–232

    Google Scholar 

  11. Yao DG, Kim B (2002) Development of rapid heating and cooling systems for injection molding applications. Polym Eng Sci 42(12):2471–2481

    Article  Google Scholar 

  12. Yoon JD, Hong SK, Kim JH, Cha SW (2004) A mold surface treatment for improving surface finish of injection molded microcellular parts. Cell Polym 23(1):39–47

    Google Scholar 

  13. Chang PC, Hwang SJ (2006) Experimental investigation of infrared rapid surface heating for injection molding. J Appl Polym Sci 102(4):3704–3713

    Article  MathSciNet  Google Scholar 

  14. Yao DG, Kimerling TE, Kim B (2006) High-frequency proximity heating for injection molding applications. Polym Eng Sci 46(7):938–945

    Article  Google Scholar 

  15. Chen HL, Chien RD, Chen SC (2008) Using thermally insulated polymer film for mold temperature control to improve surface quality of microcellular injection molded parts. Int Commun Heat Mass Tran 35(8):991–994

    Article  MathSciNet  Google Scholar 

  16. Wang GL, Zhao GQ, Liu JT, Li HP (2009) Development and evaluation of a dynamic mould temperature control system with electric heating for variotherm injection moulding. Polym Polym Compos 17(7):443–455

    Google Scholar 

  17. Chen SC, Li HM, Huang ST, Wang YC (2010) Effect of decoration film on mold surface temperature during in-mold decoration injection molding process. Int Commun Heat Mass Tran 37(5):501–505

    Article  Google Scholar 

  18. Kim SH, Shiau CS, Kim BH, Yao DG (2007) Injection molding nanoscale features with the aid of induction heating. Polym-Plast Technol Eng 46(10–12):1031–1037

    Article  Google Scholar 

  19. Lee J, Turng LS (2010) Improving surface quality of microcellular injection molded parts through mold surface temperature manipulation with thin film insulation. Polym Eng Sci 50(7):1281–1289

    Article  Google Scholar 

  20. Park K, Sohn DH, Cho KH (2010) Eliminating weldlines of an injection-molded part with the aid of high-frequency induction heating. J Mech Sci Technol 24(1):149–152

    Article  Google Scholar 

  21. Wang GL, Zhao GQ, Li HP, Guan YJ (2010) Analysis of thermal cycling efficiency and optimal design of heating/cooling systems for rapid heat cycle injection molding process. Mater Design 31(7):3426–3441

    Article  Google Scholar 

  22. Chen SC, Jong WR, Chang JA (2006) Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line. J Appl Polym Sci 101(2):1174–1180

    Article  Google Scholar 

  23. Li HM, Chen SC, Shen CY, Chau SW, Lin YW (2009) Numerical simulations and verifications of cyclic and transient temperature variations in injection molding process. Polym-Plast Technol Eng 48(1):1–9

    Article  Google Scholar 

  24. Kim Y, Choi Y, Kang SN (2005) Replication of high density optical disc using injection mold with MEMS heater. Microsyst Technol 11(7):464–469

    Article  Google Scholar 

  25. Huang MS, Huang YL (2010) Effect of multi-layered induction coils on efficiency and uniformity of surface heating. Int J Heat Mass Tran 53(11-12):2414–2423

    Article  Google Scholar 

  26. Wang GL, Zhao GQ, Li HP, Guan YJ (2011) Multi-objective optimization design of the heating/cooling channels of the steam-heating rapid thermal response mold using particle swarm optimization. Int J Therm Sci 50(5):790–802

    Article  Google Scholar 

  27. Wang GL, Zhao GQ, Guan YJ (2010) Research on optimum heating system design for rapid thermal response mold with electric heating based on response surface methodology and particle swarm optimization. J App Polym Sci 119(2):902–921

    Article  Google Scholar 

  28. Au KM, Yu KM (2007) A scaffolding architecture for conformal cooling design in rapid plastic injection moulding. Int J Adv Manuf Technol 34:496–515

    Article  Google Scholar 

  29. Au KM, Yu KM (2012) Conformal cooling channel design and CAE simulation for rapid blow mould. Int J Adv Manuf Technol. doi:10.1007/s00170-012-4326-6

    Google Scholar 

  30. Kim YM, Bae JC, Kim HM, Kang SN (2004) Modelling of passive heating for replication of sub-micron patterns in optical disk substrates. J Phys D-Appl Phys 37(9):1319–1326

    Article  Google Scholar 

  31. Chen SC, Chang Y, Chang YP, Chen CY, Tseng CY (2009) Effect of cavity surface coating on mold temperature variation and the quality of injection molded parts. Int Commun Heat Mass Tran 36(10):1030–1035

    Article  Google Scholar 

  32. McCalla BA, Allan PS, Hornsby PR, Smith AG, Wrobel L (2004) Evaluation of pulsed cooling in injection mould tools. Proceeding of SPE ANTEC Conference 2004, pp. 461–464

  33. Smith AG, Wrobel LC, McCalla BA, Allan PS, Hornsby PR (2007) Optimisation of continuous and pulsed cooling in injection moulding processes. Plast Rubber Compos 36(3):93–100

    Article  Google Scholar 

  34. Chen SC, Chang Y, Chang TH, Chien RD (2009) Influence of using pulsed cooling for mold temperature control on microgroove duplication accuracy and warpage of the Blu-ray Disc. Int Commun Heat Mass Tran 35(2):130–138

    Article  Google Scholar 

  35. Chen SC, Wang YC, Liu SC, Cin JC (2009) Mold temperature variation for assisting micro-molding of DVD micro-featured substrate and dummy using pulsed cooling. Sensor Actuat A-Phys 151(1):87–93

    Article  Google Scholar 

  36. Yao DG, Kim B (2002) Increasing flow length in thin wall injection molding using a rapidly heated mold. Polym-Plast Technol Eng 41(5):819–832

    Article  Google Scholar 

  37. Chen SC, Jong WR, Chang YJ, Chang JA, Cin JC (2006) Rapid mold temperature variation for assisting the micro injection of high aspect ratio micro-feature parts using induction heating technology. J Micromech Microeng 16(9):1783–1791

    Article  Google Scholar 

  38. Huang MS, Tai NS (2009) Experimental rapid surface heating by induction for micro-injection molding of light-guided plates. J Appl Polym Sci 113(2):1345–1354

    Article  Google Scholar 

  39. Wang GL, Zhao GQ, Guan YJ (2011) Development and experimental study of a new electric-heating rapid thermal response mold for RHCM process. Adv Sci Lett 4(6-7):2082–2086

    Article  Google Scholar 

  40. Huang JM, Chu PP, Chang FC (2010) Conformational changes and molecular motion of poly(ethylene terephthalate) annealed above glass transition temperature. Polymer 41(5):1741–1748

    Article  Google Scholar 

  41. Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43(14):3873–3878

    Article  Google Scholar 

  42. Li JX, Cheung WL, Jia DM (1999) A study on the heat of fusion of beta-polypropylene. Polymer 40(5):1219–1222

    Article  Google Scholar 

  43. Kang J, Chen J, Cao Y, Li HL (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and beta-isotactic polypropylene. Polymer 51(1):249–256

    Article  Google Scholar 

  44. Tredoux L, Satoh I, Kurosaki Y (1999) Investigation of wave-like flow marks in injection molding: flow visualization and micro-geometry. Polym Eng Sci 39(11):2233–2241

    Article  Google Scholar 

  45. Oliveira MJ, Brito AM, Costa MC, Costa MF (2006) Gloss and surface topography of ABS: a study on the influence of the injection molding parameters. Polym Eng Sci 46(10):1394–1401

    Article  Google Scholar 

  46. Pantani R, Coccorullo I, Volpe V, Titomanlio G (2010) Shear-induced nucleation and growth in isotactic polypropylene. Macromolecules 43(21):9030–9038

    Article  Google Scholar 

  47. Chvátalová L, Navrátilová J, Čermák R, Raab M, Obadal M (2009) Joint effects of molecular structure and processing history on specific nucleation of isotactic polypropylene. Macromolecules 42(19):7413–7417

    Article  Google Scholar 

  48. Lee DJ, Shin IJ (2002) Effects of vacuum, mold temperature and cooling rate on mechanical properties of press consolidated glass fiber/PET composite. Compos Part A-Appl S 33(8):1107–1114

    Article  Google Scholar 

  49. Russell DP, Beaumont PWR (1980) Structure and properties of injection-moulded Nylon-6. I. Structure and morphology of Nylon-6. J Mater Sci 15(1):197–207

    Article  Google Scholar 

  50. Viana JC, Alves NM, Mano JF (2004) Morphology and mechanical properties of injection molded poly(ethylene terephthalate). Polym Eng Sci 44(12):2174–2184

    Article  Google Scholar 

  51. Jaruga T, Bociaga E (2008) Crystallinity of parts from multicavity injection mould. Arch Mat Sci Eng 30(1):53–56

    Google Scholar 

  52. Ignell S, Kleist U, Rigdahl M (2009) On the relations between color, gloss, and surface texture in injection-molded plastics. Color Res Appl 34(4):291–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqun Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Zhao, G. & Wang, X. Experimental research on the effects of cavity surface temperature on surface appearance properties of the moulded part in rapid heat cycle moulding process. Int J Adv Manuf Technol 68, 1293–1310 (2013). https://doi.org/10.1007/s00170-013-4921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-4921-1

Keywords

Navigation