Log in

Friction stir welding of AZ61A magnesium alloy

A parametric study

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper deals with the development of an empirical relationship to predict tensile strength of friction stir welded AZ61A magnesium alloy. The process parameters such as tool rotational speed, welding speed, axial force and tool pin profile play a major role in deciding the tensile strength. The response surface method (RSM) was used to develop the empirical relationship. The four-factor, five-level central composite design was used to minimize the number of experimental conditions. The developed empirical relationship can be effectively used to predict tensile strength of friction stir welded AZ61A magnesium alloy joints at 95 % confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39:851–865

    Article  Google Scholar 

  2. Afrin N, Chen DL, Cao X, Jahazi M (2008) Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Mater Sci Eng, A 472:179–186

    Article  Google Scholar 

  3. Chen YC, Liu H, Feng J (2006) Friction stir welding characteristics of different heat-treated-state 2219 aluminium alloy plates. Mater Sci Eng, A 420:21–25

    Article  Google Scholar 

  4. Lee WB, Yeon Y-M, Jung S-B (2004) Mechanical properties related to micro structural variation of 6061 Al alloy joints by friction stir welding. Mater Trans 45(5):1700–1705

    Article  Google Scholar 

  5. Liu HJ, Fuji H (2003) Mechanical properties of friction stir welded joints of 1050-H 24 aluminium alloy. Sci Technol Weld Join 8(6):450–454

    Article  Google Scholar 

  6. Myers RH, Montgomery DH (1995) Response surface methodology. Wiley, USA, p 705

    MATH  Google Scholar 

  7. Esparza JA, Davis WC, Trillo EA, Murr LE (2002) Friction stir welding of magnesium alloy AZ31B. J Mater Sci Lett 21:917–920

    Article  Google Scholar 

  8. Lee WB, Yeon YM, Jung SB (2003) Joint properties of friction stir welded AZ31B-H24 magnesium alloy. Mater Sci Techno 19:785–790

    Article  Google Scholar 

  9. Sunggon L, Kim S, Lee C, Yim C, Kim SJ (2005) Tensile behaviour of friction-stir-welded AZ31-H24 Mg alloy. Metall Mater Trans A 36A:1609–1612

    Google Scholar 

  10. Wang XH, Wang KS (2006) Microstructure and properties of friction stir butt welded AZ31 magnesium alloy. Mater Sci Eng A431:114–117

    Google Scholar 

  11. Pareek M, Polar A, Rumiche F, Indacochea JE (2007) Metallurgical evaluation of AZ31B-H24 magnesium alloy friction stir welds. Mater Eng Perform 16(5):655–662

    Article  Google Scholar 

  12. Dhanapal A, Rajendra BS, Balasubramanian V (2011) Develo** an empirical relationship to predict the corrosion rate of friction stir welded AZ61A magnesium alloy under salt fog environment. Mater Des 32:5066–5072

    Article  Google Scholar 

  13. Padmanaban G, Balasubramanian V (2009) Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy – an experimental approach. Mater Des 30:2647–2656

    Article  Google Scholar 

  14. Rajakumar S, Muralidharan C, Balasubramanian V (2011) Influence of friction-stir-welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Mater Des 32:535–543

    Article  Google Scholar 

  15. Elangovan K, Balasubramanian V (2008) Effect of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol 38:285–295

    Article  Google Scholar 

  16. Rajakumar S, Muralidharan C, Balasubramanian V (2010) Optimization of the friction-stir-welding process and the tool parameters to attain a maximum tensile strength of AA7075-T6 aluminium alloy. J Eng Manuf 224:1175–1191

    Article  Google Scholar 

  17. Rajakumar S, Muralidharan C, Balasubramanian V (2010) Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints. Trans Non Ferr Met Soc 20:1863–1872

    Article  Google Scholar 

  18. Miller I, Freund JE, Johnson (1999) Probability and statistics for engineers. Prentice-Hall of India, New Delhi

    Google Scholar 

  19. ASTM E8-04 Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken, PA, 2004, DOI: 10.1520/E0008-04

  20. Montgomery DC (2007) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  21. Rajakumar S, Muralidharan C, Balasubramanian V (2011) Predicting tensile strength hardness and corrosion rate of friction-stir-welded AA6061-T6 aluminium alloy joints. Mater Des 32:2878–2890

    Article  Google Scholar 

  22. Lee WB (2004) Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding. Mater Trans 45(5):1700–1705

    Article  Google Scholar 

  23. Lee WB, Yeon YM, Jung S-B (2003) The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials. Script Mater 49:423–428

    Article  Google Scholar 

  24. Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A419:389–396

    Google Scholar 

  25. Zhang HW, Zhang Z, Chen JT (2005) The finite element simulation of the friction stir welding process. Metall Mater Trans A 403:305–316

    Google Scholar 

  26. Chang CI, Lee CJ, Huang JC (2004) Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scr Mater 51:509–514

    Article  Google Scholar 

  27. Gerlich A, Yamamoto M, North TH (2007) Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds 38A:1291–1302

  28. Oosterkamp A, Djapic Oosterkamp L, Nordeide A (2004) Kissing bond phenomena in solid state welds of aluminum alloys. Weld J:225s–231s

    Google Scholar 

  29. Thomas WM, Nicholas ED (1997) Friction stir welding for the transportation industries. Mater Des 18:269–273

    Article  Google Scholar 

  30. Elangovan K, Balasubramanian V, Valliappan M (2007) Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol 38:285–295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajakumar, S., Razalrose, A. & Balasubramanian, V. Friction stir welding of AZ61A magnesium alloy. Int J Adv Manuf Technol 68, 277–292 (2013). https://doi.org/10.1007/s00170-013-4728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-4728-0

Keywords

Navigation