Log in

An enhancement of DSI control charts using a fuzzy-genetic approach

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A traditional control chart used to monitor a process draws the process data at a fixed sampling rate, while a variable sampling interval (VSI) control chart varies the sampling rate as a function of on-line process data. In such a sampling policy, a higher sampling rate is adopted when there is suspicion of a change in a process. Therefore, it is able to detect the process change faster than traditional control chart, and thus has been much accepted for use. Nevertheless, the binary suspicious grade used in VSI policy to specify the sampling rate is not detailed enough to explain the acquired information from process data. As a result, this paper aims to refine the suspicious grade and sampling interval lengths to increase the detection ability of VSI charts. This study first establishes a composition function on two sides of the control chart by introducing the concept of fuzzily suspicious grade to specify the sampling rate. Then, genetic algorithms (GAs) is used to adjust the values of the parameters in this composition function to enhance the dual-sampling-interval (DSI) charts-one type of the VSI charts in common use-in terms of average time to signal (ATS) for process mean shift. In addition, some statistical properties of the enhanced DSI charts as well as performance comparison to traditional DSI charts are provided and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reynolds MR, Arnold JC (1989) Optimal one-sided Shewhart control charts with variable sampling intervals. Seq Anal 8:51–77

    Google Scholar 

  2. Cui RQ, Reynolds MR (1988) X-bar charts with run rules and variable sampling intervals. Commun Stat Simulat 17(3):1073–1093

    Google Scholar 

  3. Reynolds MR, Amin RW, Arnold JC, Nachals JA (1988) X-bar charts with variable sampling intervals. Technometrics 30:181–192

    Google Scholar 

  4. Reynolds MR (1989) Optimal variable sampling interval control chart. Seq Anal 8:361–379

    Google Scholar 

  5. Reynolds MR, Arnold JC (2001) EWMA control charts with variable sample sizes and variable sampling intervals. IIE Trans 33:511–530

    Article  Google Scholar 

  6. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Google Scholar 

  7. Zadeh LA (1975) The concept of a linguistic variable and its application to approximation reasoning. Inform Sci 8:199–249(I), 301–357(II)

    Article  Google Scholar 

  8. Reynolds MR (1986) Optimal two-sided variable sampling interval control charts for the exponential family. In: Technical Report 86-4, Virginia Polytechnic Institute and State University, Department of Statistics

  9. Reynolds MR, Arnold JC (1986) Optimal one-sided Shewhart control charts with variable sampling intervals between samples. Technical Report 86-3, Virginia Polytechnic Institute and State University, Department of Statistics

  10. Davis L (ed) (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

  11. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

  12. Karr CL, Gentry EJ (1993) Fuzzy control of pH using genetic algorithms. IEEE Trans Fuzzy Sys 1(1):46–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-K. Chen.

Appendices

Appendix 1

Let f 0 be the probability density function of standard normal distribution and f be the truncated probability density function defined as follows.

$$f{\left( z \right)} = \frac{{f_{0} {\left( z \right)}}} {{\Phi {\left( u \right)} - \Phi {\left( l \right)}}},\;\;l \leqslant z \leqslant u$$

Then

$$E{\left( z \right)} = {\int_{{\text{ }}l}^{{\text{ }}u} {\frac{{zf_{0} {\left( z \right)}}} {{\Phi {\left( u \right)} - \Phi {\left( l \right)}}}dz} } = {\int_{{\text{ }}l}^{{\text{ }}u} {\frac{{\frac{1} {{{\sqrt {2\pi } }}}ze^{{ - z^{2} /2}} }} {{\Phi {\left( u \right)} - \Phi {\left( l \right)}}}} }dz = \frac{{f_{0} {\left( l \right)} - f_{0} {\left( u \right)}}} {{\Phi {\left( u \right)} - \Phi {\left( l \right)}}},$$

which implies

$${\int_{{\text{ }}l}^{{\text{ }}u} {zf_{0} {\left( z \right)}dz} } = f_{0} {\left( l \right)} - f_{0} {\left( u \right)}$$
(8)

In addition,

$$\begin{array}{*{20}l} {{E{\left( {z^{2} } \right)}} \hfill} & {{ = {\int_{{\text{ }}l}^{{\text{ }}u} {\frac{{z^{2} f_{0} {\left( z \right)}}} {{\Phi {\left( u \right)} - \Phi {\left( l \right)}}}dz} } = {\int_{{\text{ }}l}^{{\text{ }}u} {\frac{{\frac{1} {{{\sqrt {2\pi } }}}z^{2} e^{{ - z^{2} /2}} }} {{\Phi {\left( u \right)} - \Phi {\left( l \right)}}}} }dz} \hfill} & {{} \hfill} \\ {{} \hfill} & {{ = \frac{{lf_{0} {\left( l \right)} - uf_{0} {\left( u \right)} + {\left( {\Phi {\left( u \right)} - \Phi {\left( l \right)}} \right)}}} {{\Phi {\left( u \right)} - \Phi {\left( l \right)}}}} \hfill} & {{{\left( {{\text{Integration}}\;{\text{by}}\;{\text{part}}} \right)}} \hfill} \\ {{} \hfill} & {{ = \frac{{lf_{0} {\left( l \right)} - uf_{0} {\left( u \right)}}} {{\Phi {\left( u \right)} - \Phi {\left( l \right)}}} + 1} \hfill} & {{} \hfill} \\ \end{array} $$

which implies

$${\int_l^u {z^{2} f_{0} {\left( z \right)}dz} } = lf_{0} {\left( l \right)} - uf_{0} {\left( u \right)} + \Phi {\left( u \right)} - \Phi {\left( l \right)}$$
(9)

Appendix 2: Derivation of Eq. 5

$$\begin{array}{*{20}l} {{E{\left( {H_{{0i}} } \right)}} \hfill} & {{ = {\int_{ - k}^{{\text{ }}k} {h{\left( z \right)}\frac{{f_{0} {\left( z \right)}}} {{1 - q_{0} }}dz} }} \hfill} \\ {{} \hfill} & {{ = \frac{1} {{1 - q_{0} }}{\int_{ - k}^{{\text{ }}k} {h{\left( z \right)}f_{0} {\left( z \right)}dz} }} \hfill} \\ {{} \hfill} & {{ = \frac{1} {{1 - q_{0} }}{\left\{ {{\text{ }}{\int_{ - k}^{ - b} {mf_{0} {\left( z \right)}dz} } + {\int_{ - b}^{ - a} {{\left( {Sz + I} \right)}f_{0} {\left( z \right)}dz} } + {\int_{ - a}^{{\text{ }}a} {Mf_{0} {\left( z \right)}dz} } + {\int_{{\text{ }}a}^{{\text{ }}b} {{\left( { - Sz + I} \right)}f_{0} {\left( z \right)}dz} } + {\int_{{\text{ }}b}^{{\text{ }}k} {mf_{0} {\left( z \right)}dz{\text{ }}} }} \right\}}} \hfill} \\ \end{array} $$

Merging the first term with the last term and the second term with the fourth term results in

$$E{\left( {H_{{0i}} } \right)} = \frac{1} {{1 - q_{0} }}{\left\{ {2m{\left[ {\Phi {\left( k \right)} - \Phi {\left( b \right)}} \right]} + 2{\left[ {S{\left( {f_{0} {\left( b \right)} - f_{0} {\left( a \right)}} \right)} + I{\left( {\Phi {\left( b \right)} - \Phi {\left( a \right)}} \right)}} \right]} + M{\left( {\Phi {\left( a \right)} - \Phi {\left( { - a} \right)}} \right)}} \right\}}$$

Appendix 3: Derivation of Eq. 6

Let f 1 be the probability density function of standard normal distribution under μ=μ 1, so f 1(z)=f 0(zδ).

$$\begin{array}{*{20}l} {{E{\left( {H_{{1i}} } \right)}} \hfill} & {{ = {\int_{ - k}^{{\text{ }}k} {h{\left( z \right)}\frac{{f_{1} {\left( z \right)}}} {{1 - q_{1} }}dz} }} \hfill} \\ {{} \hfill} & {{ = \frac{1} {{1 - q_{1} }}{\int_{ - k}^{{\text{ }}k} {h{\left( z \right)}f_{1} {\left( z \right)}dz} }} \hfill} \\ {{} \hfill} & {{ = \frac{1} {{1 - q_{1} }}{\left\{ {{\text{ }}{\int_{ - k}^{ - b} {mf_{1} {\left( z \right)}dz} } + {\int_{ - b}^{ - a} {{\left( {Sz + I} \right)}f_{1} {\left( z \right)}dz} } + {\int_{ - a}^{{\text{ }}a} {Mf_{1} {\left( z \right)}dz} } + {\int_{{\text{ }}a}^{{\text{ }}b} {{\left( { - Sz + I} \right)}f_{1} {\left( z \right)}dz} } + {\int_{{\text{ }}b}^{{\text{ }}k} {mf_{1} {\left( z \right)}dz{\text{ }}} }} \right\}}} \hfill} \\ \end{array} $$

Let z′=zδ. This results in

$$E{\left( {H_{{1i}} } \right)} = \frac{1} {{1 - q_{1} }}{\left\{ {\begin{array}{*{20}l} {{m{\int_{ - k - \delta }^{ - b - \delta } {f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}} }d{z}\ifmmode{'}\else$'$\fi + {\int_{ - b - \delta }^{ - a - \delta } {{\left[ {S{\left( {{z}\ifmmode{'}\else$'$\fi + \delta } \right)} + I} \right]}f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi + M} }{\int_{ - a - \delta }^{a - \delta } {f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi} }} \hfill} \\ {{ + {\int_{a - \delta }^{b - \delta } {{\left[ { - S{\left( {{z}\ifmmode{'}\else$'$\fi + \delta } \right)} + I} \right]}f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi} } + m{\int_{b - \delta }^{k - \delta } {f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)})d{z}\ifmmode{'}\else$'$\fi} }} \hfill} \\ \end{array} } \right\}}$$

Applying the Eq. 9 from Appendix 1 to the second and fourth terms yields

$$E{\left( {H_{{1i}} } \right)} = \frac{1} {{1 - q_{1} }}{\left\{ {\begin{array}{*{20}l} {{m{\left[ {\Phi {\left( { - b - \delta } \right)} - \Phi {\left( { - k - \delta } \right)}} \right]} + S{\left[ {f_{0} {\left( { - b - \delta } \right)} - f_{0} {\left( { - a - \delta } \right)}} \right]}} \hfill} \\ {{ + {\left( {\delta S + I} \right)}{\left[ {\Phi {\left( { - a - \delta } \right)} - \Phi {\left( { - b - \delta } \right)}} \right]}} \hfill} \\ {{ + M{\left[ {\Phi {\left( {a - \delta } \right)} - \Phi {\left( { - a - \delta } \right)}} \right]} - S{\left[ {f_{0} {\left( {a - \delta } \right)} - f_{0} {\left( {b - \delta } \right)}} \right]}} \hfill} \\ {{ + {\left( { - \delta S + I} \right)}{\left[ {\Phi {\left( {b - \delta } \right)} - \Phi {\left( {a - \delta } \right)}} \right]} + m{\left[ {\Phi {\left( {k - \delta } \right)} - \Phi {\left( {b - \delta } \right)}} \right]}} \hfill} \\ \end{array} } \right\}}$$

Appendix 4: Derivation of Eq. 7

$$\begin{array}{*{20}l} {{E{\left( {H^{2}_{{oi}} } \right)}} \hfill} & {{ = {\int_{ - k}^{{\text{ }}k} {h^{2} {\left( z \right)}\frac{{f_{0} {\left( z \right)}}} {{1 - q_{0} }}dz} }} \hfill} \\ {{} \hfill} & {{ = \frac{1} {{1 - q_{0} }}{\int_{ - k}^{{\text{ }}k} {h^{2} {\left( z \right)}f_{0} {\left( z \right)}dz} }} \hfill} \\ {{} \hfill} & {{ = \frac{1} {{1 - q_{0} }}{\left\{ {\begin{array}{*{20}l} {{{\int_{ - k}^{ - b} {m^{2} f_{0} {\left( z \right)}dz + {\int_{ - b}^{ - a} {{\left( {S^{2} z^{2} - 2SIz + I^{2} } \right)}f_{0} {\left( z \right)}dz} }} }} \hfill} \\ {{ + {\int_{ - a}^{{\text{ }}a} {M^{2} f_{0} {\left( z \right)}dz} } + {\int_a^{{\text{ }}b} {{\left( {S^{2} z^{2} - 2SIz + I^{2} } \right)}} }f_{0} {\left( z \right)}dz + {\int_b^{{\text{ }}k} {m^{2} f_{0} {\left( z \right)}dz} }} \hfill} \\ \end{array} } \right\}}} \hfill} \\ \end{array} \begin{array}{*{20}l} {{} \hfill} \\ {{} \hfill} \\ {{} \hfill} \\ \end{array} $$

Applying Eqs. 9 and 10 from Appendix 1 to the second and fourth terms yields

$$\begin{array}{*{20}l} {{E{\left( {H^{2}_{{oi}} } \right)}} \hfill} & {{ = \frac{1} {{1 - q_{0} }}{\left\{ {\begin{array}{*{20}l} {{m^{2} {\left[ {\Phi {\left( { - b} \right)} - \Phi {\left( { - k} \right)}} \right]} + S^{2} {\left[ { - bf_{0} {\left( { - b} \right)} + af_{0} {\left( { - a} \right)} + \Phi {\left( { - a} \right)} - \Phi {\left( { - b} \right)}} \right]}} \hfill} \\ {{ + 2SI{\left[ {f_{0} {\left( { - b} \right)} - f_{0} {\left( { - a} \right)}} \right]} + I^{2} {\left[ {\Phi {\left( { - a} \right)} - \Phi {\left( { - b} \right)}} \right]}} \hfill} \\ {{ + M^{2} {\left[ {\Phi {\left( a \right)} - \Phi {\left( { - a} \right)}} \right]} + S^{2} {\left[ {af_{0} {\left( a \right)} - bf_{0} {\left( b \right)} + \Phi {\left( b \right)} - \Phi {\left( a \right)}} \right]}} \hfill} \\ {{ - 2SI{\left[ {f_{0} {\left( a \right)} - f_{0} {\left( b \right)}} \right]} + I^{2} {\left[ {\Phi {\left( b \right)} - \Phi {\left( a \right)}} \right]}} \hfill} \\ {{ + m^{2} {\left[ {\Phi {\left( k \right)} - \Phi {\left( b \right)}} \right]}} \hfill} \\ \end{array} } \right\}}} \hfill} \\ {{} \hfill} & {{ = \frac{1} {{1 - q_{0} }}{\left\{ {\begin{array}{*{20}l} {{2m^{2} {\left[ {\Phi {\left( k \right)} - \Phi {\left( b \right)}} \right]} + 2S^{2} {\left[ {af_{0} {\left( a \right)} - bf_{0} {\left( b \right)} + \Phi {\left( b \right)} - \Phi {\left( a \right)}} \right]}} \hfill} \\ {{ + 4SI{\left[ {f_{0} {\left( b \right)} - f_{0} {\left( a \right)}} \right]} + 2I^{2} {\left[ {\Phi {\left( b \right)} - \Phi {\left( a \right)}} \right]} + M^{2} {\left[ {\Phi {\left( a \right)} - \Phi {\left( { - a} \right)}} \right]}} \hfill} \\ \end{array} } \right\}}} \hfill} \\ \end{array} $$

Appendix 5: Derivation of Eq. 8

$$\begin{array}{*{20}l} {{E{\left( {H_{{1i}} ^{2} } \right)}} \hfill} & {{ = {\int_{ - k}^{{\text{ }}k} {h^{2} {\left( z \right)}\frac{{f_{1} {\left( z \right)}}} {{1 - q_{1} }}dz} }} \hfill} \\ {{} \hfill} & {{ = \frac{1} {{1 - q_{1} }}{\int_{ - k}^{{\text{ }}k} {h^{2} {\left( z \right)}f_{1} {\left( z \right)}d} }z} \hfill} \\ {{} \hfill} & {{ = \frac{1} {{1 - q1}}{\left\{ {\begin{array}{*{20}l} {{{\int_{ - k}^{ - b} {m^{2} f_{1} {\left( z \right)}dz} } + {\int_{ - b}^{{\text{ }}a} {{\left( {S^{2} z^{2} + 2SIz + I^{2} } \right)}f_{0} {\left( z \right)}dz} }} \hfill} \\ {{ + {\int_{ - a}^{{\text{ }}a} {M^{2} f_{1} {\left( z \right)}dz} } + {\int_a^{{\text{ }}b} {{\left( {S^{2} z^{2} - 2SIz + I^{2} } \right)}f_{1} {\left( z \right)}dz + {\int_{{\text{ }}b}^{{\text{ }}k} {m^{2} f_{1} {\left( z \right)}dz} }} }} \hfill} \\ \end{array} } \right\}}} \hfill} \\ \end{array} $$

Let z′=zδ. It results that

$$E{\left( {H_{{1i}} ^{2} } \right)} = \frac{1} {{1 - q_{1} }}{\left\{ {\begin{array}{*{20}l} {{m^{2} {\int_{ - k - \delta }^{ - b - \delta } {f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}dz'} } + {\int_{ - b - \delta }^{ - a - \delta } {S^{2} {\left( {{z}\ifmmode{'}\else$'$\fi + \delta } \right)}^{2} f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi} }} \hfill} \\ {{ + 2SI{\int_{ - k - \delta }^{ - a - \delta } {{\left( {{z}\ifmmode{'}\else$'$\fi + \delta } \right)}f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi + I^{2} {\int_{ - b - \delta }^{ - a - \delta } {f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi} }} }} \hfill} \\ {{ + M^{2} {\int_{ - a - \delta }^{{\text{ }}a - \delta } {f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi} } + {\int_{{\text{ }}a - \delta }^{{\text{ }}b - \delta } {S^{2} {\left( {{z}\ifmmode{'}\else$'$\fi + \delta } \right)}^{2} f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi} }} \hfill} \\ {{ - 2SI{\int_{{\text{ }}a - \delta }^{{\text{ }}b - \delta } {{\left( {{z}\ifmmode{'}\else$'$\fi + \delta } \right)}f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi} } + I^{2} {\int_{{\text{ }}a - \delta }^{{\text{ }}b - \delta } {f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi} } + m^{2} {\int_{{\text{ }}b - \delta }^{{\text{ }}k - \delta } {f_{0} {\left( {{z}\ifmmode{'}\else$'$\fi} \right)}d{z}\ifmmode{'}\else$'$\fi} }} \hfill} \\ \end{array} } \right\}}$$

Applying the Eqs. 9 and 10 of Appendix 1 to the second and sixth terms and Eq. 9 to the third and seventh terms yields

$$E{\left( {H_{{1i}} ^{2} } \right)} = \frac{1} {{1 - q_{1} }}{\left\{ {\begin{array}{*{20}l} {{m^{2} {\left[ {\Phi {\left( { - b - \delta } \right)} - \Phi {\left( { - k - \delta } \right)} + \Phi {\left( {b - \delta } \right)}} \right]}} \hfill} \\ {{ + M^{2} {\left[ {\Phi {\left( {a - \delta } \right)} - \Phi {\left( { - a - \delta } \right)}} \right]}} \hfill} \\ {{ + S^{2} {\left\{ {\begin{array}{*{20}l} {{{\left( { - b - \delta } \right)}f_{0} {\left( { - b - \delta } \right)} - {\left( { - a - \delta } \right)}f_{0} {\left( { - a - \delta } \right)} + \Phi {\left( { - a - \delta } \right)} - \Phi {\left( { - b - \delta } \right)}} \hfill} \\ {{ + 2\delta {\left[ {f_{0} {\left( { - b - \delta } \right)} - f_{0} {\left( { - a - \delta } \right)}} \right]} + \delta ^{2} {\left[ {\Phi {\left( { - a - \delta } \right)} - \Phi {\left( { - b - \delta } \right)}} \right]}} \hfill} \\ \end{array} } \right\}}} \hfill} \\ {{ + 2SI{\left[ {f_{0} {\left( { - b - \delta } \right)} - f_{0} {\left( { - a - \delta } \right)}} \right]}} \hfill} \\ {{ + {\left( {2SI\delta + I^{2} } \right)}{\left[ {\Phi {\left( { - a - \delta } \right)} - \Phi {\left( { - b - \delta } \right)}} \right]}} \hfill} \\ {{ + S^{2} {\left\{ {\begin{array}{*{20}l} {{{\left( {a - \delta } \right)}f_{0} {\left( {a - \delta } \right)} - {\left( {b - \delta } \right)}f_{0} {\left( {b - \delta } \right)} + \Phi {\left( {b - \delta } \right)} - \Phi {\left( {a - \delta } \right)}} \hfill} \\ {{ + 2\delta {\left[ {f_{0} {\left( {a - \delta } \right)} - f_{0} {\left( {b - \delta } \right)}} \right]} + \delta ^{2} {\left[ {\Phi {\left( {b - \delta } \right)} - \Phi {\left( {a - \delta } \right)}} \right]}} \hfill} \\ \end{array} } \right\}}} \hfill} \\ {{ - 2SI{\left[ {f_{0} {\left( {a - \delta } \right)} - f_{0} {\left( {b - \delta } \right)}} \right]}} \hfill} \\ {{ + {\left( {I^{2} - 2SI\delta } \right)}{\left[ {\Phi {\left( {b - \delta } \right)} - \Phi {\left( {a - \delta } \right)}} \right]}} \hfill} \\ \end{array} } \right\}}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YK., Yeh, C. An enhancement of DSI control charts using a fuzzy-genetic approach. Int J Adv Manuf Technol 24, 32–40 (2004). https://doi.org/10.1007/s00170-003-1706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-003-1706-y

Keywords

Navigation