We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Log in

Patient-specific positioning guides do not consistently achieve the planned implant position in UKA

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To investigate whether the intended preoperative planning corresponded with the postoperative component position after medial UKA using patient-specific positioning guides (PSPGs).

Methods

Twenty-five consecutive UKAs performed with the PSPG technique (Signature™) were included. Two independent observers performed postoperative CT measurements. The preoperative angles for the femoral component were defined in the frontal plane as 0°. In the first eight cases, a femoral component with single peg was inserted, and the flexion of the femoral component was set to 5°. In the last 17 cases, a twin-peg component was used and flexion set to 10°. In the axial plane, the femoral component was on average set at 2.5° internal rotation. The preoperative tibial component angles in the frontal and axial plane were defined as 0° and in the sagittal plane as 4° in flexion.

Results

The postoperative femoral component angles were on average 0.8° of valgus (SD 3.2, range 12.2° valgus to 5.1° varus, n.s., CI −2.1 to 0.6), 5.0° of flexion (SD 3.9, range 10.2° flexion to 6.0° extension, p = 0.001, CI −5.3 to −1.5) and 4.0° of internal rotation (SD 1.7, range 1.4° to 6.9° int.rot., p < 0.001, CI −4.7 to −3.4). The tibial component angles were on average 3.0° of varus (SD 1.9, range 1.3° valgus to 6.8° varus, p < 0.001, CI 2.2 to 3.8), 3.2° of flexion (SD 2.4°, 6.7° flex to 1.8° ext, n.s., CI −0.2 to 1.7) and 2.7° of internal rotation (SD 7.0, range 16.6° int.rot. to 10.7° ext.rot., n.s., CI −5.6 to 0.2).

Conclusion

This study showed no agreement between preoperative planning and postoperative component alignment (p < 0.05) for the femoral component angle in sagittal and axial plane and for the tibial component angle in the coronal plane. Although the results did not show significant difference for the tibial component angle in the axial plane, a considerable range of the component angles was found varying from 17° internal to 11° external rotation. This study suggests that the use of PSPGs for UKA does not lead to consistent component position.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aleto TJ, Berend ME, Ritter MA, Faris PM, Meneghini RM (2008) Early failure of unicompartmental knee arthroplasty leading to revision. J Arthroplasty 23(2):159–163

    Article  PubMed  Google Scholar 

  2. Badawy M, Espehaug B, Indrekvam K, Havelin LI, Furnes O (2014) Higher revision risk for unicompartmental knee arthroplasty in low-volume hospitals. Acta Orthop 85(4):342–347

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, Faris GW, Davis KE (2004) Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res 428:26–34

    Article  Google Scholar 

  4. Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP (2013) Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial. Knee Surg Sports Traumatol Arthrosc 21(10):2206–2212

    Article  CAS  PubMed  Google Scholar 

  5. Boonen B, Schotanus MG, Kerens B, Hulsmans FJ, Tuinebreijer WE, Kort NP (2015) Patient-specific positioning guides for total knee arthroplasty: no significant difference between final component alignment and pre-operative digital plan except for tibial rotation. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3661-1

  6. Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C (2013) A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J 95-B(3):354–359

    Article  CAS  PubMed  Google Scholar 

  7. Chotanaphuti T, Wangwittayakul V, Khuangsirikul S, Foojareonyos T (2014) The accuracy of component alignment in custom cutting blocks compared with conventional total knee arthroplasty instrumentation: prospective control trial. Knee 21(1):185–188

    Article  PubMed  Google Scholar 

  8. Cobb JP, Dixon H, Dandachli W, Iranpour F (2008) The anatomical tibial axis: reliable rotational orientation in knee replacement. J Bone Joint Surg Br 90(8):1032–1038

    Article  CAS  PubMed  Google Scholar 

  9. Collier MB, Eickmann TH, Sukezaki F, McAuley JP, Engh GA (2006) Patient, implant, and alignment factors associated with revision of medial compartment unicondylar arthroplasty. J Arthroplasty 21(6 Suppl 2):108–115

    Article  PubMed  Google Scholar 

  10. Diezi C, Wirth S, Meyer DC, Koch PP (2010) Effect of femoral to tibial varus mismatch on the contact area of unicondylar knee prostheses. Knee 17(5):350–355

    Article  PubMed  Google Scholar 

  11. Hamilton WG, Parks NL, Saxena A (2013) Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty 28(8 Suppl):96–100

    Article  PubMed  Google Scholar 

  12. Hernigou P, Deschamps G (2004) Alignment influences wear in the knee after medial unicompartmental arthroplasty. Clin Orthop Relat Res 423:161–165

    Article  Google Scholar 

  13. Hernigou P, Deschamps G (2004) Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone Joint Surg Am 86-A(3):506–511

    Article  PubMed  Google Scholar 

  14. Heyse TJ, El-Zayat BF, De Corte R, Chevalier Y, Scheys L, Innocenti B, Fuchs-Winkelmann S, Labey L (2014) UKA closely preserves natural knee kinematics in vitro. Knee Surg Sports Traumatol Arthrosc 22(8):1902–1910

    Article  PubMed  Google Scholar 

  15. Heyse TJ, Lipman JD, Imhauser CW, Tucker SM, Rajak Y, Westrich GH (2014) Accuracy of individualized custom tibial cutting guides in UKA. HSS J 10(3):260–265

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hopper GP, Leach WJ (2008) Participation in sporting activities following knee replacement: total versus unicompartmental. Knee Surg Sports Traumatol Arthrosc 16(10):973–979

    Article  PubMed  Google Scholar 

  17. Iriberri I, Aragon JF (2014) Alignment of the tibial component of the unicompartmental knee arthroplasty, assessed in the axial view by CT scan: does it influence the outcome? Knee 21(6):1269–1274

    Article  PubMed  Google Scholar 

  18. Jenny JY, Ciobanu E, Boeri C (2007) The rationale for navigated minimally invasive unicompartmental knee replacement. Clin Orthop Relat Res 463:58–62

    PubMed  Google Scholar 

  19. Kerens B, Schotanus MG, Boonen B, Kort NP (2015) No radiographic difference between patient-specific guiding and conventional Oxford UKA surgery. Knee Surg Sports Traumatol Arthrosc 23(5):1324–1329

    Article  PubMed  Google Scholar 

  20. Kim JG, Kasat NS, Bae JH, Kim SJ, Oh SM, Lim HC (2012) The radiological parameters correlated with the alignment of the femoral component after Oxford phase 3 unicompartmental knee replacement. J Bone Joint Surg Br 94(11):1499–1505

    Article  CAS  PubMed  Google Scholar 

  21. Koskinen E, Eskelinen A, Paavolainen P, Pulkkinen P, Remes V (2008) Comparison of survival and cost-effectiveness between unicondylar arthroplasty and total knee arthroplasty in patients with primary osteoarthritis: a follow-up study of 50,493 knee replacements from the Finnish Arthroplasty Register. Acta Orthop 79(4):499–507

    Article  PubMed  Google Scholar 

  22. Leeuwen JA, Grogaard B, Nordsletten L, Rohrl SM (2015) Comparison of planned and achieved implant position in total knee arthroplasty with patient-specific positioning guides. Acta Orthop 86(2):201–207

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lombardi AV Jr, Berend KR, Walter CA, Aziz-Jacobo J, Cheney NA (2009) Is recovery faster for mobile-bearing unicompartmental than total knee arthroplasty? Clin Orthop Relat Res 467(6):1450–1457

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lyons MC, MacDonald SJ, Somerville LE, Naudie DD, McCalden RW (2012) Unicompartmental versus total knee arthroplasty database analysis: Is there a winner? Clin Orthop Relat Res 470(1):84–90

    Article  PubMed  Google Scholar 

  25. Newman J, Pydisetty RV, Ackroyd C (2009) Unicompartmental or total knee replacement: the 15-year results of a prospective randomised controlled trial. J Bone Joint Surg Br 91(1):52–57

    Article  CAS  PubMed  Google Scholar 

  26. Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr (2012) Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res 470(1):99–107

    Article  PubMed  Google Scholar 

  27. Noticewala MS, Geller JA, Lee JH, Macaulay W (2012) Unicompartmental knee arthroplasty relieves pain and improves function more than total knee arthroplasty. J Arthroplasty 27(8 Suppl):99–105

    Article  PubMed  Google Scholar 

  28. Ollivier M, Parratte S, Lunebourg A, Viehweger E, Argenson JN (2016) The John Insall Award: no functional benefit after unicompartmental knee arthroplasty performed with patient-specific instrumentation: a randomized trial. Clin Orthop Relat Res 474(1):60–68

    Article  PubMed  Google Scholar 

  29. Price AJ, Svard U (2011) A second decade lifetable survival analysis of the Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res 469(1):174–179

    Article  PubMed  Google Scholar 

  30. Rosenberger RE, Fink C, Quirbach S, Attal R, Tecklenburg K, Hoser C (2008) The immediate effect of navigation on implant accuracy in primary mini-invasive unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 16(12):1133–1140

    Article  PubMed  Google Scholar 

  31. Sawatari T, Tsumura H, Iesaka K, Furushiro Y, Torisu T (2005) Three-dimensional finite element analysis of unicompartmental knee arthroplasty–the influence of tibial component inclination. J Orthop Res 23(3):549–554

    Article  CAS  PubMed  Google Scholar 

  32. Schuirmann DJ (1987) A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J Pharmacokinet Biopharm 15(6):657–680

    Article  CAS  PubMed  Google Scholar 

  33. Schwab PE, Lavand’homme P, Yombi JC, Thienpont E (2015) Lower blood loss after unicompartmental than total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23(12):3494–3500

    Article  PubMed  Google Scholar 

  34. Servien E, Fary C, Lustig S, Demey G, Saffarini M, Chomel S, Neyret P (2011) Tibial component rotation assessment using CT scan in medial and lateral unicompartmental knee arthroplasty. Orthop Traumatol Surg Res 97(3):272–275

    Article  CAS  PubMed  Google Scholar 

  35. Silva A, Sampaio R, Pinto E (2014) Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc 22(3):636–642

    Article  PubMed  Google Scholar 

  36. Swienckowski J, Page BJ 2nd (1989) Medial unicompartmental arthroplasty of the knee. Use of the L-cut and comparison with the tibial inset method. Clin Orthop Relat Res 239:161–167

    Google Scholar 

  37. Trong MLD, Diezi C, Goerres G, Helmy N (2014) Improved positioning of the tibial component in unicompartmental knee arthroplasty with patient-specific cutting blocks. Knee Surg Sports Traumatol Arthrosc

  38. Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J (2014) Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res 472(1):263–271

    Article  PubMed  Google Scholar 

  39. Vorlat P, Putzeys G, Cottenie D, Van Isacker T, Pouliart N, Handelberg F, Casteleyn PP, Gheysen F, Verdonk R (2006) The Oxford unicompartmental knee prosthesis: an independent 10-year survival analysis. Knee Surg Sports Traumatol Arthrosc 14(1):40–45

    Article  PubMed  Google Scholar 

  40. Weber P, Crispin A, Schmidutz F, Utzschneider S, Pietschmann MF, Jansson V, Muller PE (2013) Improved accuracy in computer-assisted unicondylar knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21(11):2453–2461

    Article  PubMed  Google Scholar 

  41. Werner FW, Ayers DC, Maletsky LP, Rullkoetter PJ (2005) The effect of valgus/varus malalignment on load distribution in total knee replacements. J Biomech 38(2):349–355

    Article  PubMed  Google Scholar 

  42. Willis-Owen CA, Brust K, Alsop H, Miraldo M, Cobb JP (2009) Unicondylar knee arthroplasty in the UK National Health Service: an analysis of candidacy, outcome and cost efficacy. Knee 16(6):473–478

    Article  PubMed  Google Scholar 

  43. Yoshioka Y, Siu DW, Scudamore RA, Cooke TD (1989) Tibial anatomy and functional axes. J Orthop Res 7(1):132–137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mona Risdal and Silje Klausen, radiographers at the Center of Implant and Radiostereometric Research, Oslo for performing the postoperative CT measurements, Anette Simonsen, nurse at Betanien Hospital, for her contribution in collecting data and Ingri Ekrol, consultant orthopaedic surgeon at Betanien Hospital, for critical reading and linguistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin A. M. J. van Leeuwen.

Ethics declarations

Conflict of interest statement

No financial funding or other support from companies has been received for this study. One author worked as a consultant for Biomet (participated in evaluation of the first Signatures for Biomet).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Leeuwen, J.A.M.J., Röhrl, S.M. Patient-specific positioning guides do not consistently achieve the planned implant position in UKA. Knee Surg Sports Traumatol Arthrosc 25, 752–758 (2017). https://doi.org/10.1007/s00167-016-4268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4268-x

Keywords

Navigation