Log in

Commonly used ACL autograft areas do not correlate with the size of the ACL footprint or the femoral condyle

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to reveal the correlation between the size of the native anterior cruciate ligament (ACL) footprint and the area of commonly used autografts using cadaveric knees.

Methods

Twenty-Four non-paired human cadaver knees were used. The size of the femoral and tibial ACL footprints, length of Blumensaat’s line, and the height and area of the lateral wall of the femoral intercondylar notch were photographed and measured with Image J software (National Institution of Health). Simulating an semitendinosus tendon (ST) graft, the ST was cut in half. The bigger half was regarded as the antero-medial (AM) bundle, and the remaining half was regarded as the postero-lateral (PL) bundle. Simulating an semitendinosus and gracilis (ST–G) graft, the bigger half of the ST and G was regarded as the AM bundle, and the smaller half of the ST was regarded as the PL bundle. Each graft diameter was measured, and the graft area was calculated. Simulating a bone–patella tendon–bone (BPTB) graft, a 10-mm wide BPTB graft was harvested and the area calculated.

Results

The sizes of the native femoral and tibial ACL footprints were 72.3 ± 24.4 and 134.1 ± 32.4 mm2, respectively. The length of Blumensaat’s line, and the height and area of the lateral wall of the femoral intercondylar notch were 29.5 ± 2.5 mm, 17.7 ± 2.3 mm, and 400.9 ± 62.6 mm2, respectively. The average areas of the ST, ST–G, and BPTB graft were 52.7 ± 6.3, 64.7 ± 7.6, and 37.1 ± 7.5 mm2. Both the height and the area of the lateral wall of the femoral intercondylar notch were significantly correlated with the femoral size of the ACL footprint (p = 0.007 and 0.008, respectively). However, no significant correlation was observed between ACL footprint size and autograft size. No significant correlation was observed between autograft size and the size of the lateral wall of the femoral intercondylar notch.

Conclusion

In ACL reconstruction, if the reconstructed ACL size is determined by the harvested autograft size alone, native ACL size and anatomy are unlikely to be reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

AM:

Antero-medial bundle

BPTB:

Bone–patella tendon–bone

ST:

Semitendinosus

ST–G:

Semitendinosus–gracilis

PL:

Postero-lateral bundle

References

  1. Brophy RH, Selby RM, Altchek DW (2006) Anterior cruciate ligament revision: double-bundle augmentation of primary vertical graft. Arthroscopy 22(683):e1–e5

    PubMed  Google Scholar 

  2. Darcy SP, Kilger RH, Woo SL, Debski RF (2006) Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel noninvasive methodology. J Bionechnol 39:2371–2377

    Google Scholar 

  3. Dargel J, Schmidt-Wiethoff R, Feiser J et al (2011) Relationship between human femorotibial joint configuration and the morphometry of the anterior cruciate ligament. Arch Orthop Trauma Surg 131:1095–1105

    Article  PubMed  Google Scholar 

  4. Davis TJ, Shelbourne KD, Klootwyk TE (1999) Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7:209–214

    Article  CAS  PubMed  Google Scholar 

  5. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23:1218–1225

    Article  PubMed  Google Scholar 

  6. Fu FH (2011) Double-bundle ACL reconstruction. Orthopedics 34:281–283

    Article  PubMed  Google Scholar 

  7. Hara K, Mochizuki T, Sekiya I, Yamaguchi K, Akita K, Muneta T (2009) Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles. Am J Sports Med 37:2386–2391

    Article  PubMed  Google Scholar 

  8. Harner CD, Baek GH, Vogrin TM et al (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15:741–749

    Article  CAS  PubMed  Google Scholar 

  9. Iriuchishima T, Tajima G, Ingham SJ et al (2009) Intercondylar roof im**ement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 17:590–594

    Article  PubMed  Google Scholar 

  10. Iriuchishima T, Tajima G, Shirakura K et al (2011) In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 131:1085–1090

    Article  PubMed  Google Scholar 

  11. Iriuchishima T, Ingham SJ, Tajima G et al (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18:1226–1231

    Article  PubMed  Google Scholar 

  12. Iriuchishima T, Tajima G, Ingham SJ, Shen W, Smolinski P, Fu FH (2010) Im**ement pressure in the anatomical and non anatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med 38:1611–1617

    Article  PubMed  Google Scholar 

  13. Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH (2013) Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-012-2356-0

  14. Iriuchishima T, Shirakura K, Yorifuji H, Aizawa S, Fu FH (2013) Size comparison of ACL footprint and reconstructed auto graft. Knee Surg Sports Traumatol Arthrosc 21:797–803

    Article  PubMed  Google Scholar 

  15. Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction. Part 2: clinical application of surgical technique. Am J Sports Med 39:2016–2026

    Article  PubMed  Google Scholar 

  16. Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36:1675–1687

    Article  PubMed  Google Scholar 

  17. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17:213–219

    Article  PubMed  Google Scholar 

  18. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39:108–1013

    Article  PubMed  Google Scholar 

  19. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19:297–304

    Article  PubMed  Google Scholar 

  20. Luites JW, Wymenga AB, Blankevoort L et al (2007) Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc 15:1422–1431

    Article  PubMed Central  PubMed  Google Scholar 

  21. Maeyama A, Hoshino Y, Debandi A et al (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19:1233–1238

    Article  PubMed  Google Scholar 

  22. Mochizuki T, Fujishiro H, Nimura A, et al (2013) Anatomic and histologic analysis of the mid-substance and fan-like extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2404-4

  23. Muneta T, Koga H, Mochizuki T et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double bundle techniques. Arthroscopy 23:618–628

    Article  PubMed  Google Scholar 

  24. Muneta T, Takakuda K, Yamamoto H (1997) Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 25:69–72

    Article  CAS  PubMed  Google Scholar 

  25. Niki Y, Matsumoto H, Hakozaki A, Kanagawa H, Toyama Y, Suda Y (2011) Anatomic double-bundle anterior cruciate ligament reconstruction using bone-patellar tendon-bone and gracilis tendon graft: a comparative study with 2-year follow-up results of semitendinosus tendon grafts alone or semitendinosus-gracilis tendon grafts. Arthroscopy 27:1242–1251

    Article  PubMed  Google Scholar 

  26. Okada E, Matsumoto M, Ichihara D et al (2011) Cross-sectional area of posterior extensor muscles of the cervical spine in asymptomatic subjects: a 10-year longitudinal magnetic resonance imaging study. Eur Spine J 20:1567–1573

    Article  PubMed Central  PubMed  Google Scholar 

  27. Shin SH, Jeon IH, Kim HJ et al (2010) Articular surface area of the coronoid process and radial head in elbow extension: surface ration in cadavers and a computed tomography in vivo. J Hand Surg Am 35:1120–1125

    Article  PubMed  Google Scholar 

  28. Shino K, Nakata K, Nakamura N et al (2008) Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 24:1178–1183

    Article  PubMed  Google Scholar 

  29. Siebold R, Ellert T, Metz S et al (2008) Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy 24:585–592

    Article  PubMed  Google Scholar 

  30. Siebold R, Ellert T, Metz S et al (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24:154–161

    Article  PubMed  Google Scholar 

  31. Siebold R, Schuhmacher P (2012) Restoration of the tibial ACL footprint area and geometry using the Modified Insertion Site Table. Knee Surg Sports Traumatol Arthrosc 20:1845–1849

    Article  PubMed  Google Scholar 

  32. Steiner ME, Murray MM, Rodeo SA (2008) Strategies to improve anterior cruciate ligament healing and graft placement. Am J Sports Med 36:176–189

    Article  PubMed  Google Scholar 

  33. Stijak L, Randonjic V, Nikolic V, Blagojevic Z, Aksic M, Filipovic B (2009) Correlation between the morphometric parameters of the anterior cruciate ligament and the intercondylar width: gender and age difference. Knee Surg Sports Traumatol Arthrosc 17:812–817

    Article  PubMed  Google Scholar 

  34. Takahashi M, Doi M, Abe M et al (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34:787–792

    Article  PubMed  Google Scholar 

  35. Tompkins M, Ma R, Hogan MV, Miller MD (2011) What’s new in sports medicine. J Bone Joint Surg Am 93:789–797

    Article  PubMed  Google Scholar 

  36. van Eck CF, Kopf S, van Dijk CN, Fu FH, Tashman S (2011) Comparison of 3-dimensional notch volume between subjects with and subjects without anterior cruciate ligament rupture. Arthroscopy 27:1235–1241

    Article  PubMed  Google Scholar 

  37. van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH (2010) Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthosc 18:1257–1262

    Article  Google Scholar 

  38. Wolters F, Vrooi**k SH, Van Eck CF, Fu FH (2011) Does notch size predict ACL insertion site size? Knee Surg Sports Traumatol Arthrosc 19:S17–S21

    Article  PubMed  Google Scholar 

  39. Wu E, Chen M, Cooperman D, Victoroff B, Goodfellow D, Farrow LD (2011) No correlation of height or gender with anterior cruciate ligament footprint size. J Knee Surg 24:39–43

    Article  PubMed  Google Scholar 

  40. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  41. Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22:240–251

    Article  PubMed  Google Scholar 

  42. Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single-and double-bundle anterior cruciate ligament reconstruction. Part 1: basic science. Am J Sports Med 39:1789–1799

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Iriuchishima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iriuchishima, T., Ryu, K., Yorifuji, H. et al. Commonly used ACL autograft areas do not correlate with the size of the ACL footprint or the femoral condyle. Knee Surg Sports Traumatol Arthrosc 22, 1573–1579 (2014). https://doi.org/10.1007/s00167-013-2595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2595-8

Keywords

Navigation