Log in

Thermal convection in a liquid metal battery

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few centimeters in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.C., Swarztrauber, P., Sweet, R.: Efficient fortran subprograms for the solution of separable elliptic partial differential equations. http://www.cisl.ucar.edu/css/software/fishpack/ (1999)

  2. Arguss, B.: Regenerative battery. US Patent 3,245,836 (1966)

  3. Chandrasekhar S.: Hydrodynamic and hydromagnetic stability. Oxford-Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  4. Davidson P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  5. Davidson P.A., Lindsay R.I.: Stability of interfacial waves in aluminium reduction cells. J. Fluid Mech. 362, 273–295 (1998)

    Article  MATH  Google Scholar 

  6. Herreman W., Nore C., Cappanera L., Guermond J.L.: Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771, 79–114 (2015)

    Article  MathSciNet  Google Scholar 

  7. Kelley, D.H., Sadoway, D.R.: Mixing in a liquid metal electrode. Phys. Fluids 26(5), 057,102 (2014)

  8. Kim H., Boysen D.A., Newhouse J.M., Spatocco B.L., Chung B., Burke P.J., Bradwell D.J., Jiang K., Tomaszowska A.A., Wang K., Wei W., Ortiz L.A., Barriga S.A., Poizeau S.M., Sadoway D.R.: Liquid metal batteries: past, present, and future. Chem. Rev. 113(3), 2075–2099 (2013)

    Article  Google Scholar 

  9. Krasnov D., Zikanov O., Boeck T.: Comparative study of finite difference approaches to simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comput. Fluids 50, 46–59 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krasnov D.S., Zikanov O., Boeck T.: Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421–446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kulacki F.A., Goldstein R.J.: Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J. Fluid Mech. 55, 271–287 (1972)

    Article  Google Scholar 

  12. Liu L., Zikanov O.: Elevator mode convection in flows with strong magnetic fields. Phys. Fluids 27(4), 044103 (2015)

    Article  Google Scholar 

  13. Lv, X., Zikanov, O.: Mixed convection in horizontal duct flow with transverse magnetic field and heating of side wall. Phys. Fluids 26(9), 097,106 (2014)

  14. Nepomnyashchy A., Legros J.C., Simanovskii I.: Interfacial convection in multilayer systems. Springer, NY (2012)

    Book  MATH  Google Scholar 

  15. Rüdiger G., Schultz M., Shablykov D., Hollerbach R.: Theory of current-driven instability experiments in magnetic Taylor-Couette flows. Phys. Rev. E 76, 056309 (2007)

    Article  Google Scholar 

  16. Sadoway, D., Ceder, G., Bradwell, D.: High-amperage energy storage device with liquid metal negative electrode and methods. US Patent 8,268,471 (2012)

  17. Seilmayer M., Stefani F., Gundrum T., Weier T., Gerbeth G., Gellert M., Rüdiger G.: Experimental evidence for a transient Tayler instability in a cylindrical liquid-metal column. Phys. Rev. Lett. 108, 108244501 (2012)

    Article  Google Scholar 

  18. Sneyd A., Wang A.: Interfacial instability due to MHD mode coupling in aluminium reduction cells. J. Fluid Mech. 263, 343–360 (1994)

    Article  MATH  Google Scholar 

  19. Stefani F., Weier T., Gundrum T., Gerbeth G.: How to circumvent the size limitation of liquid metal batteries due to the Tayler instability. Energy Conv. Manag. 52(8–9), 2982–2986 (2011)

    Article  Google Scholar 

  20. Sun H., Zikanov O., Ziegler D.P.: Non-linear two-dimensional model of melt flows and interface instability in aluminum reduction cells. Fluid Dyn. Res. 35(4), 255–274 (2004)

    Article  MATH  Google Scholar 

  21. Wang K., Jiang K., Chung B., Ouchi T., Burke P.J., Boysen D.A., Bradwell D.J., Kim H., Muecke U., Sadoway D.R.: Lithium–antimony–lead liquid metal battery for grid-level energy storage. Nature 514(7522), 348–350 (2014)

    Article  Google Scholar 

  22. Weber N., Galindo V., Priede J., Stefani F., Weier T.: The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries. Phys. Fluids 27(1), 014103 (2015)

    Article  Google Scholar 

  23. Weber N., Galindo V., Stefani F., Weier T.: Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them. J. Power Sources 265, 166–173 (2014)

    Article  Google Scholar 

  24. Williams, D.F.: Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop. Technical Report, ORNL (2006)

  25. Zhang X., Zikanov O.: Mixed convection in a horizontal duct with bottom heating and strong transverse magnetic field. J. Fluid Mech. 757, 33–56 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zhao Y., Zikanov O.: Instabilities and turbulence in magnetohydrodynamic flow in a toroidal duct prior to transition in Hartmann layers. J. Fluid Mech. 692, 288–316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zikanov O., Listratov Y., Sviridov V.G.: Natural convection in horizontal pipe flow with strong transverse magnetic field. J. Fluid Mech. 720, 486–516 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zikanov O., Slinn D.N., Dhanak M.R.: Turbulent convection driven by surface cooling in shallow water. J. Fluid Mech. 464, 81–111 (2002)

    Article  MATH  Google Scholar 

  29. Zikanov O., Thess A.: Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299–333 (1998)

    Article  MATH  Google Scholar 

  30. Zikanov O., Thess A., Davidson P.A., Ziegler D.P.: A new approach to numerical simulation of melt flows and interface instability in Hall Heroult cells. Metall. Mater. Trans. B 31, 1541–1550 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Zikanov.

Additional information

Communicated by Patrick Jenny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Zikanov, O. Thermal convection in a liquid metal battery. Theor. Comput. Fluid Dyn. 30, 275–294 (2016). https://doi.org/10.1007/s00162-015-0378-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0378-1

Keywords

Navigation