Log in

Eulerian–Lagrangian bridge for the energy and dissipation spectra in isotropic turbulence

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We study, numerically and analytically, the relationship between the Eulerian spectrum of kinetic energy, E E(k, t), in isotropic turbulence and the corresponding Lagrangian frequency energy spectrum, E L(ω, t), for which we derive an evolution equation. Our DNS results show that not only E L(ω, t) but also the Lagrangian frequency spectrum of the dissipation rate \({\varepsilon_{\rm L} (\omega, t)}\) has its maximum at low frequencies (about the turnover frequency of energy-containing eddies) and decays exponentially at large frequencies ω (about a half of the Kolmogorov microscale frequency) for both stationary and decaying isotropic turbulence. Our main analytical result is the derivation of equations that bridge the Eulerian and Lagrangian spectra and allow the determination of the Lagrangian spectrum, E L (ω) for a given Eulerian spectrum, E E (k), as well as the Lagrangian dissipation, \({\varepsilon_{\rm L}(\omega)}\), for a given Eulerian counterpart, \({\varepsilon_{\rm E} (k)=2\nu k^2 E_{\rm E}(k)}\). These equations were derived from the Navier–Stokes equations in the swee**-free coordinate system (intermediate between the Eulerian and Lagrangian frameworks) which eliminates the effect of the kinematic swee** of the small eddies by the larger eddies. We show that both analytical relationships between E L (ω) and E E (k) and between \({\varepsilon_{\rm L} (\omega)}\) and \({\varepsilon_{\rm E} (k)}\) are in very good quantitative agreement with our DNS results and explain how \({\varepsilon_{\rm L} (\omega, t)}\) has its maximum at low frequencies and decays exponentially at large frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor G.K.: Diffusion in a field of homogeneous turbulence. ii. The relative motion of particles. Proc. Camb. Philos. Soc. 48, 345–362 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  2. Belinicher V.I., L’vov V.S.: A scale-invariant theory of developed hydrodynamic turbulence. Sov. Phys. JETP 93, 1269–1280 (1987)

    Google Scholar 

  3. Benzi R., Biferale L., Fisher R., Lamb D.Q., Toschi F.: Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence. J. Fluid Mech. 653, 221–224 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Corrsin S.: Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J. Atmos. Sci. 20, 115–119 (1963)

    Article  Google Scholar 

  5. Ferrante, A.: Reduction of Skin Friction in a Microbubble-Laden Spatially-Develo** Turbulent Boundary Layer Over a Flat Plate. Ph.D. Thesis. University of California, Irvine (2004)

  6. Gkioulekas E.: On the elimination of the swee** interactions from theories of hydrodynamic turbulence. Physica D 226, 151–172 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hinze J.O.: Turbulence. McGraw-Hill, New York (1975)

    Google Scholar 

  8. Khan M.A.I., Vassilicos J.C.: A new Eulerian–Lagrangian length-scale in turbulent flows. Phys. Fluids 16, 216–218 (2004)

    Article  MathSciNet  Google Scholar 

  9. Kolmogorov, A.N.: The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 303–313; reprinted in Proc. R. Soc. Lond. A 434, 9–13 (1991), 1941

  10. Kraichnan R.H.: The structure of isotropic turbulence at very high Reynolds number. J. Fluid Mech. 5, 497–543 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kraichnan, R.H.: Lagrangian-history closure approximation for turbulence. Phys. Fluids 20, 575–598 (1965) (and erratum 9, 1966, 1884)

    Google Scholar 

  12. Kraichnan R.H.: Eulerian and Lagrangian renormalization in turbulence theory. J. Fluid Mech. 83, 349–374 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lucci F., Ferrante A., Elghobashi S.: Modulation of isotropic turbulence by particles of Taylor-lengthscale size. J. Fluid Mech. 650, 5–55 (2010)

    Article  MATH  Google Scholar 

  14. Lundgren T.S.: Linearly forced isotropic turbulence, pp. 461–473. Annual Research Briefs, Center for Turbulence Research, Stanford (2003)

    Google Scholar 

  15. L’vov V.S., Procaccia I.: Exact resummations in the theory of hydrodynamic turbulence: I. The ball of locality and normal scaling. Phys. Rev. E 52, 3840–3857 (1995)

    Article  MathSciNet  Google Scholar 

  16. Martin P.C., Siggia E.D., Rose H.A.: Statistical dynamics of classical systems. Phys. Rev. A 8, 423–437 (1973)

    Article  Google Scholar 

  17. Monin A.S.: The theory of locally isotropic turbulence. Dokl. Akad. Nauk. SSSR 125, 515–518 (1959)

    MathSciNet  Google Scholar 

  18. Pope, S.B.: Turbulent Flows. Cambridge Univ Press (2000)

  19. Richardson L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709–737 (1926)

    Article  Google Scholar 

  20. Taylor G.I.: Diffusion by continuous movement. Proc. Lond. Math. Soc. A 20, 196 (1921)

    MATH  Google Scholar 

  21. Tennekes H.: Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561–567 (1975)

    Article  MATH  Google Scholar 

  22. Tennekes H., Lumley J.L.: A First Course in Turbulence. The MIT Press, Cambridge, MA (1972)

    Google Scholar 

  23. Wyld H.W.: Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14, 143–165 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yeung P.K.: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115–142 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Elghobashi.

Additional information

Communicated by S. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucci, F., L’vov, V.S., Ferrante, A. et al. Eulerian–Lagrangian bridge for the energy and dissipation spectra in isotropic turbulence. Theor. Comput. Fluid Dyn. 28, 197–213 (2014). https://doi.org/10.1007/s00162-013-0310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-013-0310-5

Keywords

Navigation