Log in

A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. Part I: Constitutive models

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We consider a constitutive model for polycrystalline ice, which contains delayed-elastic and viscous deformations, and a damage variable. The damage variable is coupled to the delayed-elastic deformation by a fiber bundle ansatz. We construct an isotropic theory, which can be calibrated with experimental data. Furthermore, we generalize the theory to a damage model in terms of rank-four tensors. This general model allows the evolution of anisotropic damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaboche J.L.: Thermodynamically founded CDM models for creep and other conditions. In: Altenbach, H., Skrzypek, J.J. (eds.) Creep and Damage in Materials and Structures, chap. 5., pp. 209–283. Springer, Wien, NY (1999)

    Chapter  Google Scholar 

  2. Corless R., Gonnet G., Hare D., Jeffrey D., Knuth D.: On the Lambert W-function. Adv. Comput. Math. 5(1), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Duddu R., Waisman H.: A temperature dependent creep damage model for polycrystalline ice. Mech. Mater. 46, 23–41 (2012)

    Article  Google Scholar 

  4. Greve R.: Kontinuumsmechanik. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  5. Hutter K., Jöhnk K.: Continuum Methods of Physical Modeling: Continuum Mechanics, Dimensional Analysis, Turbulence. Springer, Berlin, Germany (2004)

    Book  Google Scholar 

  6. Jacka T.H.: The time and strain required for development of minimum strain rates in ice. Cold Regions Sci. Technol. 8(3), 261–268 (1984)

    Article  Google Scholar 

  7. Kachanov, L.M.: Time of the rupture process under creep conditions (in Russian). Izv. Akad. Nauk. USSR, Otd. Tekh. Nauk., pp. 26–31 (1957)

  8. Keller, A., Hutter, K.: On the thermodynamic consistency of the equivalence principle in continuum damage mechanics. J. Mech. Phys. Solids 59(5), 1115–1120 (2011). doi:10.1016/j.jmps.2011.01.015 . http://www.sciencedirect.com/science/article/B6TXB-523CDY6-2/2/bda2f1b70e114f23d673d5cbff6f7e1d

    Google Scholar 

  9. Keller, A., Hutter, K.: A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. Part II: Thermodynamics of a rank-4 damage model. Continuum Mech. Thermodyn. doi:10.1007/s00161-014-0335-z

  10. Krajcinovic D.: Damage Mechanics. North-Holland, Amsterdam (1996)

    Google Scholar 

  11. Kun F., Moreno Y., Hidalgo R., Herrmann H.: Creep rupture has two universality classes. EPL (Europhys. Lett.) 63, 347 (2003)

    Article  ADS  Google Scholar 

  12. Lemaitre J., Lippmann H.: A Course on Damage Mechanics, vol. 2. Springer, Berlin (1996)

    Book  Google Scholar 

  13. Mahrenholtz, O., Wu, Z.: Determination of creep damage parameters for polycrystalline ice. Advances in Ice Technology (3rd Int. Conf. Ice Tech./Cambridge USA) pp. 181–192 (1992)

  14. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials, vol. 37. North-Holland, Amsterdam (1993)

    Google Scholar 

  15. Pralong A., Hutter K., Funk M.: Anisotropic damage mechanics for viscoelastic ice. Contin. Mech. Thermodyn. 17(5), 387–408 (2006). doi:10.1007/s00161-005-0002-5

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Rist M., Murrell S.: Relationship between creep and fracture of ice. Mech. Creep-brittle Mater. 2, 355–369 (1991)

    Article  Google Scholar 

  17. Schulson E., Duval P.: Creep and Fracture of Ice. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  18. Sinha N.K.: Crack-enhanced creep in polycrystalline material: strain-rate sensitive strength and deformation of ice. J. Mater. Sci. 23(12), 4415–4428 (1988)

    Article  ADS  Google Scholar 

  19. Skrzypek J.J., Ganczarski A.: Modeling of Material Damage and Failure of Structures. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  20. Szyszkowski W., Glockner P.: On a multiaxial constitutive law for ice. Mech. Mater. 5(1), 49–71 (1986)

    Article  Google Scholar 

  21. Weiss J., Gay M.: Fracturing of ice under compression creep as revealed by a multifractal analysis. J. Geophys. Res. 103(B10), 24005-24 (1998)

    ADS  Google Scholar 

  22. **ao J., Jordaan I.: Application of damage mechanics to ice failure in compression. Cold Regions Sci. Technol. 24(3), 305–322 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Keller.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, A., Hutter, K. A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. Part I: Constitutive models. Continuum Mech. Thermodyn. 26, 879–894 (2014). https://doi.org/10.1007/s00161-014-0348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0348-7

Keywords

Navigation