Log in

Non-parametric shape optimization method for robust design of solid, shell, and frame structures considering loading uncertainty

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The robust design of structures is essential to improve their stabilities in structural design optimization and has been studied based on a variety of optimization methods. In this study, we propose a non-parametric optimization method for the robust shape design of solid, shell, and frame structures subjected to uncertainty loadings. We adopt the concept of principal compliance to perform the robust shape design considering loading uncertainty and transform the principal compliance minimization problem into the fundamental eigenvalue maximization problem associated with the weighting coefficients of the unknown loadings. The proposed non-parametric shape optimization method for robust design consists of four main procedures: the eigenvalue analysis of structures, derivation of shape gradient functions considering repeated eigenvalues, velocity analysis based on the H1 gradient method, and shape updating. We perform several design examples to confirm the validity of the proposed non-parametric shape optimization method. The optimal results show that the proposed optimization method works efficiently to reduce the principal compliance and enhance the robust behavior of each design example. As a feature, by setting the weighting coefficients, we can enhance the robust of the structures subjected to the unknown loadings at different loading positions and with different magnitudes of the directions of the admissible loading space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

\( \left(\overline{\cdotp}\right) \) :

Variation

(·) :

Shape derivative

\( \left(\overset{\cdotp }{\cdotp}\right)\kern0.24em \left(={\left(\cdotp \right)}^{\prime }+{\left(\cdotp \right)}_{,i}{V}_i\right) \) :

Material derivative

(·)s :

Iteration history of domain variation

(·),i(=(·)/∂x i):

Partial differential notation

a(·,·):

Virtual work of rigidity

A :

Mid-surface of shell structures

A b :

Cross-section of beams in frame structures

A s :

Mid-surface of shell structures after domain variation

b(·,·):

Virtual work of pseudo-inertia

{C ijkl}i, j, k, l = 1, 2, 3 :

Stiffness tensor of solids structures

{C αβγδ}α, β, γ, δ = 1, 2 :

Stiffness tensor of shell structures with respect to membrane stress

\( {\left\{{C}_{\alpha \beta}^S\right\}}_{\alpha, \beta =1,2} \) :

Stiffness tensor of shell structures with respect to transverse shear stress

\( {C}_{\varTheta}^{\mathrm{solid}} \) :

Kinematically admissive function space of solid structures

\( {C}_{\varTheta}^{\mathrm{shell}} \) :

Kinematically admissive function space of shell structures

\( {C}_{\varTheta}^{\mathrm{frame}} \) :

Kinematically admissive function space of frame structures

d :

Diameter of members in frame structures

E :

Young’s modulus

f = {f i}i = 1, 2, 3 :

External loadings

F = {F i}i = 1, 2, 3 :

Admissible loading space

G|frame(=G|frame n):

Shape gradient function of frame structures

G|shell(=G|shell n):

Shape gradient function of shell structures

G|solid(=G|solid n):

Shape gradient function of solid structures

G (1)|solid, \( {\left.{G}_f^{(1)}\right|}_{\mathrm{solid}} \) :

Shape gradient density functions of solid structures

G (1)|shell, \( {\left.{G}_f^{(1)}\right|}_{\mathrm{shell}} \) :

Shape gradient density functions of shell structures

\( {\left.{G}_1^{(1)}\right|}_{\mathrm{frame}} \), \( {\left.{G}_2^{(1)}\right|}_{\mathrm{frame}} \) :

Shape gradient density functions of frame structures

H 1 :

Sobolev space of square integrable and differentiable

l :

Compliance

l p :

Principal compliance

L :

Lagrange functional

M :

Volume

M 0 :

Initial volume

\( \widehat{M} \) :

Constraint value of M

n :

Direction vector

n 1 :

Unit vector in x1 direction

n 2 :

Unit vector in x2 direction

n btm :

Normal vector at the bottom surface of shell structures

n mid :

Normal vector at the mid-surface of shell structures

n top :

Normal vector at the top surface of shell structures

n φ :

Unit vector according to φ

n φ +  π :

Unit vector according to angle φ + π

P 1, P 2, P 3, P 4 :

Positions subjected to unknown loadings

r (≥2):

Multiplicity of repeated eigenvalues

s :

Time of domain variation

S :

Centroidal axis of frame structures

S j (j = 1, 2, 3, ..., N):

Centroidal axis of member j in frame structures

S s :

Centroidal axis of frame structures after domain variation

t :

Thickness of shell structures

T s(X):

Map**

u = {u i}:

Displacement vector of frame structures

U :

Admissible function space satisfying Dirichlet boundary condition

V :

Design velocity field

V 1 :

Design velocity field in n1 direction

V 2 :

Design velocity field in n2 direction

w = {w i}i = 1, 2, 3 :

Displacement vector

w 0 = {w 0α}α = 1, 2 :

In-plane displacement vector of shell structures

x = {x 1, x 2, x 3}:

Position vector

\( \widehat{x}=\left\{{\widehat{x}}_1,{\widehat{x}}_2,{\widehat{x}}_3\right\} \) :

Vector of loading position

X(={X 1, X 2, X 3}):

Position vector in Ω

X s(={X s1, X s2, X s3}):

Position vector in Ωs

∂A b :

Circumference of the cross-section of members in frame structures

:

One-dimensional space

2 :

Two-dimensional space

3 :

Three-dimensional space

Δs :

A small positive value

α :

Spring constant

δ(·):

Delta function

ϕ :

Tolerance of repeated eigenvalues

φ :

Angle

η :

Lagrange multiplier of principal compliance

η max :

Maximum value of η

κ :

Twice the mean curvature of shell structures or the curvature of frame structures

λ (r) (r = 1, 2, 3, ...):

rth eigenvalue

μ :

Shear modulus of frame structures

ν :

Poisson’s ratio

θ :

Circumferential angle of compliance

θ = {θ i}(i = 1, 2, 3):

Rotation angle vector of frame structures in the local coordinate system

θ = {θ α}(α = 1, 2):

Rotation angle vector of shell structures in the local coordinate system

ρ :

Density

{ξ ij}i,j = 1,2,3,{ξ αβ}α,β = 1,2 :

Weighting coefficient matrix in terms of F

ΔM :

Decrease of volume

Γ :

Boundary of domain Ω

Γ j (j = 1, 2, 3, ..., N):

Circumference surface of member j in frame structures

Γ s :

Boundary of domain Ωs

Λ :

Lagrange multipliers for volume constraint

Ω :

Initial domain

Ω f :

Domain subjected to external loadings

Ω j (j = 1, 2, 3, ..., N):

Domain of member j in frame structures

\( {\varOmega}_f^j\;\left(j=1,2,3,...,{N}_f\right) \) :

Domain subjected to external loadings in frame structures

Ω s :

Updated domain after variation

References

  • Azegami H (1994) Solution to domain optimization problems. Trans Jpn Soc Mech Eng Ser A 60:1479–1486 (in Japanese)

    Article  Google Scholar 

  • Azegami H, Kaizu S, Shimoda M, Katamine E (1997) Irregularity of shape optimization problems and an improvement technique. Computer Aided Optimization Design of Structures V:309–326

  • Ben-Tal A, Nemirovski A (1997) Robust truss topology design via semidefinite programming. SIAM J Optim 7:991–1016

    Article  MathSciNet  MATH  Google Scholar 

  • Beyer HG, Sendhoff B (2007) Robust optimization – a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  • Cao MJ, Ma HT, Wei P (2015) A novel robust design method for improving stability of optimized structures. Acta Mech Sinica 31:104–111

    Article  Google Scholar 

  • Cheng J, Liu Z, Tang M, Tan J (2017) Robust optimization of uncertain structures based on normalized violation degree of interval constraint. Comput Struct 182:41–54

    Article  Google Scholar 

  • Cherkaev E, Cherkaev A (2003) Principal compliance and robust optimal design. J Elast 72:71–98

    Article  MathSciNet  MATH  Google Scholar 

  • Cherkaev E, Cherkaev A (2008) Minimax optimization problem of structural design. Comput Struct 86:1426–1435

    Article  MATH  Google Scholar 

  • Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization 1: linear systems. Springer, New York

    Google Scholar 

  • Christiansen RE, Lazarov BS, Jensen JS, Sigmund O (2015) Creating geometrically robust designs for highly sensitive problems using topology optimization. Struct Multidiscip Optim 52:737–754

    Article  MathSciNet  Google Scholar 

  • De Gournay F, Allaire G, Jouve F (2008) Shape and topology optimization of the robust compliance via the level set method. ESAIM: COCV 14:43–70

    MathSciNet  MATH  Google Scholar 

  • Doltsinis I, Kang Z (2004) Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 193:2221–2237

    Article  MATH  Google Scholar 

  • Fisher RA (1951) Design of experiments. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Garcia-Lopez NP, Sanchez-Silva M, Medaglia AL, Chateauneuf A (2013) An improved robust topology optimization approach using multiobjective evolutionary algorithms. Comput Struct 125:1–10

    Article  Google Scholar 

  • Gu X, Sun G, Li G, Mao L, Li Q (2013) A comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure. Struct Multidiscip Optim 48:669–684

    Article  Google Scholar 

  • Guo X, Bai W, Zhang W, Gao X (2009) Confidence structural robust design and optimization under stiffness and load uncertainties. Comput Methods Appl Mech Eng 198:3378–3399

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhang L (2013) Robust structural topology optimization considering boundary uncertainties. Comput Methods Appl Mech Eng 253:356–368

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhao X, Zhang W, Yan J, Sun G (2015) Multi-scale robust design and optimization considering load uncertainties. Comput Methods Appl Mech Eng 283:994–1009

    Article  MathSciNet  MATH  Google Scholar 

  • Hashimoto D, Kanno Y (2015) A semidefinite programming approach to robust truss topology optimization under uncertainty in locations of nodes. Struct Multidiscip Optim 51:439–461

    Article  MathSciNet  Google Scholar 

  • Haug EJ, Rousselet B (1980) Design sensitivity analysis in structural mechanics. II. Eigenvalue variations. J Struct Mech 8:161–186

    Article  MathSciNet  Google Scholar 

  • He ZC, Wu Y, Li E (2018) Topology optimization of structure for dynamic properties considering hybrid uncertain parameters. Struct Multidiscip Optim 57:625–638

    Article  MathSciNet  Google Scholar 

  • Jansen M, Lombaert G, Diehl M, Lazarov BS, Sigmund O, Schevenels M (2013) Robust topology optimization accounting for misplacement of material. Struct Multidiscip Optim 47:317–333

    Article  MathSciNet  MATH  Google Scholar 

  • Jansen M, Lombaert G, Schevenels M (2015) Robust topology optimization of structures with imperfect geometry based on geometric nonlinear analysis. Comput Methods Appl Mech Eng 285:452–467

    Article  MathSciNet  MATH  Google Scholar 

  • Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200:985–996

    Article  MathSciNet  MATH  Google Scholar 

  • Lee I, Choi KK, Du L, Gorsich D (2008) Dimension reduction method for reliability-based robust design optimization. Comput Struct 86:1550–1562

    Article  MATH  Google Scholar 

  • Li F, Sun G, Huang X, Rong J, Li Q (2015) Multiobjective robust optimization for crashworthiness design of foam filled thin-walled structures with random and interval uncertainties. Eng Struct 88:111–124

    Article  Google Scholar 

  • Lim J, Jang YS, Chang HS, Park JC, Lee J (2018) Role of multi-response principal component analysis in reliability-based robust design optimization: an application to commercial vehicle design. Struct Multidiscip Optim 58:785–796

    Article  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121:259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Mandol S, Bhattacharjee D, Dan PK (2016) Robust optimization in determining failure criteria of a planetary gear assembly considering fatigue condition. Struct Multidiscip Optim 53:291–302

    Article  Google Scholar 

  • Martínez-Frutos J, Herrero-Pérez D (2016) Large-scale robust topology optimization using multi-GPU systems. Comput Methods Appl Mech Eng 311:393–414

    Article  MathSciNet  Google Scholar 

  • Martínez-Frutos J, Herrero-Pérez D, Kessler M, Periago F (2016) Robust shape optimization of continuous structures via the level set method. Comput Methods Appl Mech Eng 305:271–291

    Article  MathSciNet  Google Scholar 

  • Peng X, Li J, Jiang S, Liu Z (2018) Robust topology optimization of continuum structures with loading uncertainty using a perturbation method. Eng Optim 50:584–598

    Article  MathSciNet  Google Scholar 

  • Schevenels M, Lazarov BS, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200:3613–3627

    Article  MATH  Google Scholar 

  • Shahraki AF, Noorossana R (2014) Reliability-based robust design optimization: a general methodology using genetic algorithm. Comput Ind Eng 74:199–207

    Article  Google Scholar 

  • Shi JX, Nagano T, Shimoda M (2017) Fundamental frequency maximization of orthotropic shells using a free-form optimization method. Compos Struct 170:135–145

    Article  Google Scholar 

  • Shimoda M, Liu Y (2014) A non-parametric free-form optimization method for shell structures. Struct Multidiscip Optim 50:409–423

    Article  MathSciNet  Google Scholar 

  • Shimoda M, Liu Y, Morimoto T (2014) Non-parametric free-form optimization method for frame structures. Struct Multidiscip Optim 50:129–146

    Article  MathSciNet  Google Scholar 

  • Shimoda M, Nagano T, Shintani K, Ito S (2015) Robust shape optimization method for a linear elastic structure with unknown loadings. Trans JSME 81:832 (in Japanese)

    Google Scholar 

  • Shimoda M, Nagano T, Morimoto T, Liu Y, Shi JX (2016a) Non-parametric free-form optimal design of frame structures in natural frequency problem. Int J Mech Sci 117:334–345

    Article  Google Scholar 

  • Shimoda M, Otani H, Shi JX (2016b) Design optimization of composite structures composed of dissimilar materials based on a free-form optimization method. Compos Struct 146:114–121

    Article  Google Scholar 

  • Shimoda M, Kameyama K, Shi JX (2017) Tailoring static deformation of frame structures based on a non-parametric shape–size optimization method. Int J Solids Struct 112:143–154

    Article  Google Scholar 

  • Sun G, Song X, Baek S, Li Q (2014) Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel. Struct Multidiscip Optim 49:897–913

    Article  Google Scholar 

  • Taguchi G (1984) Quality engineering through design optimization. Kraus International Publications, New York

    Google Scholar 

  • Takezawa A, Nii S, Kitamura M, Kogiso N (2011) Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 200:2268–2281

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  • **a Q, Shi T (2016a) Topology optimization of compliant mechanism and its support through a level set method. Comput Methods Appl Mech Eng 305:359–375

    Article  MathSciNet  Google Scholar 

  • **a Q, Shi T (2016b) Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method. Comput Methods Appl Mech Eng 311:56–70

    Article  MathSciNet  Google Scholar 

  • **a Q, Shi T, Wang MY (2011) A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Struct Multidiscip Optim 43:473–485

    Article  MathSciNet  MATH  Google Scholar 

  • **a Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90–91:55–64

    Article  Google Scholar 

  • **a Q, Shi T, Liu S, Wang MY (2013) Shape and topology optimization for tailoring stress in a local region to enhance performance of piezoresistive sensors. Comput Struct 114–115:98–105

    Article  Google Scholar 

  • Yin H, Fang H, **ao Y, Wen G, Qing Q (2015) Multi-objective robust optimization of foam-filled tapered multi-cell thin-walled structures. Struct Multidiscip Optim 52:1051–1067

    Article  MathSciNet  Google Scholar 

  • Zang C, Friswell MI, Mottershead JE (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83:315–326

    Article  Google Scholar 

  • Zhao HK, Osher S, Merriman B, Kang M (2000) Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput Vis Image Underst 80:295–314

    Article  MATH  Google Scholar 

  • Zhou P, Du J, Lü Z (2017) Interval analysis based robust truss optimization with continuous and discrete variables using mix-coded genetic algorithm. Struct Multidiscip Optim 56:353–370

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **-**ng Shi.

Additional information

Responsible Editor: Xu Guo

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimoda, M., Nagano, T. & Shi, JX. Non-parametric shape optimization method for robust design of solid, shell, and frame structures considering loading uncertainty. Struct Multidisc Optim 59, 1543–1565 (2019). https://doi.org/10.1007/s00158-018-2144-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2144-7

Keywords

Navigation