Log in

Linear programming approach to design of spatial link mechanism with partially rigid joints

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A simple systematic approach is presented for designing a spatial link mechanism with partially rigid joints. A linear programming (LP) problem to find an infinitesimal mechanism that maximizes the output displacement is first formulated. The objective function of this LP problem has a penalty term to obtain a sparse solution including small numbers of hinges and members to be removed. It is shown that the dual of this LP problem can be regarded as a plastic limit analysis problem that maximizes the load factor under the equilibrium condition and upper- and lower-bound constraints on the member-end forces of a given frame structure. A heuristic approach is presented to obtain a finite mechanism by solving the LP problem after updating the nodal locations in the direction of inextensional deformation. It is shown in the numerical examples that various planar and spatial mechanisms can be easily found using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Artobolevsky A (1977) Mechanisms in modern engineering design. MIR Publishers, Moscow

    Google Scholar 

  • Avilés R, Vallejo J, Ajuria G, Agirrebeitia J (2000) Second-order methods for the optimum synthesis of multibody systems. Struct Multidiscip Optim 19:192–203

    Article  Google Scholar 

  • Avilés R, Vallejo J, Fernández de Bustos I, Aguirrebeitia J, Ajuria G (2010) Optimum synthesis of planar linkages using a strain-energy error function under geometric constraints. Mech Mach Theory 45:65–79

    Article  MATH  Google Scholar 

  • Candès EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted 1 minimization. J Fourier Anal Appl 14:877–905

    Article  MATH  MathSciNet  Google Scholar 

  • Chen S, Donoho D, Saunders M (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20:33–61

    Article  MathSciNet  Google Scholar 

  • Collard J-F, Gosselin C (2011) Optimal synthesis of a planar reactionless three-degreeof-freedom parallel mechanism. J Mech Robot ASME 3(041009)

  • Dassault Systèmes Simulia (2013) ABAQUS Ver. 6.13 Documentation

  • Erdman AG (1981) Three and four precision point kinematic synthesis of planar linkages. Mech Mach Theory 16:227–245

    Article  Google Scholar 

  • Erdman AG (1995) Computer-aided mechanism design: Now and the future. J Mech Des ASME 117(B):93–100

    Article  Google Scholar 

  • Fernández-Bustos I, Aguirrebeitia J, Avilés R, Angulo C (2005) Kinematical synthesis of 1-dof mechanisms using finite elements and genetic algorithms. Finite Elem Anal Des 41:1441–1463

    Article  Google Scholar 

  • Freudenstein F (1995) Approximate synthesis of four-bar linkages. Trans ASME 77:853–861

    MathSciNet  Google Scholar 

  • Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12:979–1006

    Article  MATH  MathSciNet  Google Scholar 

  • Jiménez JM, Álvarez G, Cardenal J, Cuadrado J (1997) A simple and general method for kinematic synthesis of spatial mechanisms. Mech Mach Theory 32:323–341

    Article  Google Scholar 

  • Jirásek M, Bažant ZP (2002) Inelastic analysis of structures. Wiley, Chichester

    Google Scholar 

  • Katoh N, Tanigawa S (2009) On the infinitesimal rigidity of bar-and-slider frameworks. In: Dong Y, Du D.-Z, Ibarra O (eds) Algorithms and computation, lecture notes in computer science, vol 5878. Springer-Verlag, Berlin, pp 524–533

    Google Scholar 

  • Kawamoto A (2005) Path-generation of articulated mechanisms by shape and topology variations in non-linear truss representation. Int J Numer Methods Eng 64:1557–1574

    Article  MATH  Google Scholar 

  • Kawamoto A, Bendsøe MP, Sigmund O (2004a) Planar articulated mechanism design by graph theoretical enumeration. Struct Multidiscip Optim 27:295–299

    Article  Google Scholar 

  • Kawamoto A, Bendsøe MP, Sigmund O (2004b) Articulated mechanism design with a degree of freedom constraint. Int J Numer Methods Eng 61:1520–1545

    Article  MATH  Google Scholar 

  • Kim YY, Jang G-W, Park JH, Hyun JS, Namm SJ (2007) Automatic synthesis of a planar linkage mechanism with revolute joints by using spring-connected rigid block models . J Mech Des ASME 129:930–940

    Article  Google Scholar 

  • Krishnamurty S, Turcic DA (1992) Optimal synthesis of mechanisms using nonlinear goal programming techniques. Mech Mach Theory 27:599–612

    Article  Google Scholar 

  • Liu Y, McPhee J (2004) Automated type synthesis of planar mechanisms using numeric optimization with genetic algorithms. J Mech Des ASME 127:910–916

    Article  Google Scholar 

  • Lobo MS, Fazel M, Boyd S (2007) Portfolio optimization with linear and fixed transaction costs. Ann Oper Res 152:341–365

    Article  MATH  MathSciNet  Google Scholar 

  • Matoušek J, Gärtner B (2007) Understanding and using linear programming. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Minnaar RJ, Tortorelli DA, Snyman JA (2001) On nonassembly in the optimal dimensional synthesis of planar mechanisms. Struct Multidiscip Optim 21:345–354

    Article  Google Scholar 

  • Nam SJ, Jang G-W, Kim YY (2012) The spring-connected rigid block model based automatic synthesis of planar linkage mechanisms: numerical issues and remedies. J Mech Des ASME 134:051002

    Article  Google Scholar 

  • Natarajan BK (1995) Sparse approximate solutions to linear systems. SIAM J Comput 24:227–234

    Article  MATH  MathSciNet  Google Scholar 

  • Ohsaki M, Katoh N, Kinoshita T, Tanigawa S, Avis D, Streinu I (2009) Enumeration of optimal pin-jointed bistable compliant mechanisms with non-crossing members. Struct Multidiscip Optim 37:645–651

    Article  Google Scholar 

  • Ohsaki M, Nishiwaki S (2009) Generation of link mechanism by shape-topology optimization of trusses considering geometrical nonlinearity. J Comput Sci Tech 3:46–53

    Article  Google Scholar 

  • Olson DG, Erdman AG, Riley DR (1985) A systematic procedure for type synthesis of mechanisms with literature review. Mech Mach Theory 20:285–295

    Article  Google Scholar 

  • Pucheta MA, Cardona A (2013) Topological and dimensional synthesis of planar linkages for multiple kinematic tasks. Multibody Syst Dyn 29:189–211

    Article  MathSciNet  Google Scholar 

  • Root RR, Ragsdell KM (1976) A survey of optimization methods applied to the design of mechanisms. J Eng Ind ASME 98:1036–1041

    Article  Google Scholar 

  • Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom 60:259–268

    Article  MATH  Google Scholar 

  • Sedlaczek K, Eberhard P (2009) Topology optimization of large motion rigid body mechanisms with nonlinear kinematics. J Comput Nonlinear Dyn 4:021011

    Article  Google Scholar 

  • Stolpe M, Kawamoto A (2005) Design of planar articulated mechanisms using branch and bound. Math Program 103:357–397

    Article  MATH  MathSciNet  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B (Methodol) 58:267–288

    MATH  MathSciNet  Google Scholar 

  • Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. J Royal Stat Soc Ser B (Stat Methodol) 73:273–282

    Article  MathSciNet  Google Scholar 

  • Tsuda S, Ohsaki M, Kanno Y (2013) Analysis and design of deployable frames with partially rigid connections. Proc IASS Ann Symp. Int Assoc Shell Spatial Struct ,Wroclaw, Poland, paper no. 1138

  • Vallejo J, Avilés R, Hernández A, Amezua E (1995) Nonlinear optimization of planar linkages for kinematic syntheses. Mech Mach Theory 30:501–518

    Article  Google Scholar 

  • Zhang C, Norton RL, Hammonds T (1984) Optimization of parameters for specified path generation using an atlas of coupler curves of geared five-bar linkages. Mech Mach Theory 19:459–466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ohsaki.

Additional information

An earlier version of this paper was presented at the 10th World Congress of Structural and Multidisciplinary Optimization (WCSMO10), Florida, USA, May 19–24, 2013.

Appendix

Appendix

We can obtain problem (11a) in Section 3.3 as a dual problem of problem (10a) in Section 3.2 from any standard duality theory of convex optimization. We here adopt the Lagrangian duality theory for explaining the derivation.

For notational convenience, rewrite problem (10) as

$$ \min\limits_{\boldsymbol{u}, \boldsymbol{\gamma}} {\quad} {-}\boldsymbol{f}_{\text{out}}^{\mathrm{T}} \boldsymbol{u} + \sum\limits_{i=1}^{n} \alpha w_{i} \gamma_{i} $$
(13a)
$$ \mathrm{s.{\,}t.} {\kern16pt}\gamma_{i} \ge |\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{u}| , \quad i=1,\dots,n , $$
(13b)
$$ {\kern26pt}\boldsymbol{f}_{\text{in}}^{\mathrm{T}} \boldsymbol{u} = \bar{u}_{\text{in}} . $$
(13c)

The Lagrangian of problem (13a, b, c) can be defined by

$$ L(\boldsymbol{u},\boldsymbol{\gamma},\boldsymbol{v},\boldsymbol{y},\lambda_{\text{in}}) $$
(14)
$$ =\! \left\{\begin{array}{cccc} {-}\boldsymbol{f}_{\text{out}}^{\mathrm{T}} \boldsymbol{u} + \sum_{i=1}^{n} (\alpha w_{i} \gamma_{i} - v_{i} \gamma_{i} + y_{i} \boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{u}) \\ {}- \lambda_{\text{in}} (\boldsymbol{f}_{\text{in}}^{\mathrm{T}} \boldsymbol{u} - \bar{u}_{\text{in}}) & {} if \; v_{i} \ge |y_{i}|(i=1,\dots,n), \\ {}-\infty & {\kern-7.5pc}\text{otherwise}, \end{array}\right. $$
(15)

where \(\boldsymbol {v} \in \mathbb {R}^{n}\), \(\boldsymbol {y} \in \mathbb {R}^{n}\) and \(\lambda _{\text {in}} \in \mathbb {R}\) are the Lagrange multipliers. Indeed, problem (13) can be expressed by using L as

$$\begin{array}{*{20}l} \min\limits_{\boldsymbol{u},\boldsymbol{\gamma}} \quad \sup \{ L(\boldsymbol{u},\boldsymbol{\gamma},\boldsymbol{v},\boldsymbol{y},\lambda_{\text{in}}) \mid (\boldsymbol{v},\boldsymbol{y},\lambda_{\text{in}}) \in \mathbb{R}^{2n+1} \} , \end{array} $$

because we have that

$$\begin{array}{@{}rcl@{}} & \sup_{v_{i},y_{i}} \{ -v_{i} \gamma_{i} + y_{i} (\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{u}) \mid v_{i} \ge |y_{i}| \} \\ & \ \ = \left\{\begin{array}{cccc} {}0 & {\kern1.3pc}if \gamma_{i} \ge |\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{u}|, \\ +\infty & \textnormal{otherwise}. \end{array}\right. \end{array} $$

Then the Lagrangian dual problem is defined by

$$\begin{array}{*{20}l} \max\limits_{\boldsymbol{v},\boldsymbol{y},\lambda_{\text{in}}} \quad \inf \{ L(\boldsymbol{u},\boldsymbol{\gamma},\boldsymbol{v},\boldsymbol{y},\lambda_{\text{in}}) \mid (\boldsymbol{u},\boldsymbol{\gamma}) \in \mathbb{R}^{d+n} \} . \end{array} $$
(16)

Observe that the relation

$$\begin{array}{@{}rcl@{}} & \inf \{ L(\boldsymbol{u},\boldsymbol{\gamma},\boldsymbol{v},\boldsymbol{y},\lambda_{\text{in}}) \mid (\boldsymbol{u},\boldsymbol{\gamma}) \in \mathbb{R}^{d+n} \}{\kern100pt}\notag\\ & = \left\{\begin{array}{cccc} {\kern-4.2pc}\bar{u}_{\text{in}} \lambda_{\text{in}} + \sum_{i=1}^{n} \inf \{ (\alpha w_{i} - v_{i}) \gamma_{i} \mid \gamma_{i} \in \mathbb{R} \} \\ \,\,\,\,\,{\kern.5pc} + \inf \Bigl\{ \sum_{i=1}^{n} y_{i}\boldsymbol{h}_{i}^{\mathrm{T}} \boldsymbol{u} - (\boldsymbol{f}_{\text{out}} + \lambda_{\text{in}} \boldsymbol{f}_{\text{in}})^{\mathrm{T}} \boldsymbol{u} \mid \boldsymbol{u}\in\mathbb{R}^{d} \Bigr\} \\ {\kern-4.2pc}\text{if} \; v_{i} \ge |y_{i}| \ \ (i=1,\dots,n), \\ {}{-}\infty \ \ \ \ \text{otherwise} \end{array}\right. \\ &{\kern-4.1pc} = \left\{\begin{array}{cccc} \bar{u}_{\text{in}} \lambda_{\text{in}} & if v_{i} = \alpha w_{i} \ge |y_{i}| \ \ (i=1,\dots,n), \\ & \sum_{i=1}^{n} y_{i}\boldsymbol{h}_{i} =\boldsymbol{f}_{\text{out}} + \lambda_{\text{in}} \boldsymbol{f}_{\text{in}}, \\ {-}\infty & {\kern-4.5pc}\text{otherwise} \end{array}\right. \end{array} $$

holds to see that problem (16) coincides with problem (11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohsaki, M., Kanno, Y. & Tsuda, S. Linear programming approach to design of spatial link mechanism with partially rigid joints. Struct Multidisc Optim 50, 945–956 (2014). https://doi.org/10.1007/s00158-014-1094-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1094-y

Keywords

Navigation