Log in

An integrated multidisciplinary particle swarm optimization approach to conceptual ship design

  • Industrial Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A particle swarm optimization (PSO) solver is developed based on theoretical information available from the literature. The implementation is validated by utilizing the PSO optimizer as a driver for a single discipline optimization and for a multicriterion optimization and comparing the results to a commercially available gradient based optimization algorithm, previously published results, and a simple sequential Monte Carlo model. A typical conceptual ship design statement from the literature is employed for develo** the single discipline and the multicriterion benchmark optimization statements. In the main new effort presented in this paper, an approach is developed for integrating the PSO algorithm as a driver at both the top and the discipline levels of a multidisciplinary design optimization (MDO) framework which is based on the Target Cascading (TC) method. The integrated MDO/PSO algorithm is employed for analyzing a multidiscipline optimization statement reflecting the conceptual ship design problem from the literature. Results are compared to MDO analyses performed when a gradient based optimizer comprised the optimization driver at all levels. The results, the strengths, and the weaknesses of the integrated MDO/PSO algorithm are discussed as related to conceptual ship design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov NM, Hussaini MY (1997) Multidisciplinary design optimization: state of the art. Society for Industrial & Applied Mathematics, Philadelphia

    Google Scholar 

  • Ali M, Kaelo P (2008) Improved particle swarm algorithms for global optimization. Appl Math Comput 196(2):578–593

    Article  MATH  MathSciNet  Google Scholar 

  • Berends J, van Tooren MJL et al (2006) A distributed multi-disciplinary optimisation of a blended wing body UAV using a multi-agent task environment. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, pp 1–22

  • Bochenek B, Forys P (2006) Structural optimization for post-buckling behavior using particle swarms. Struct Multidisc Optim 32(6):521–531

    Article  Google Scholar 

  • Campana E, Fasano G et al (2006a) Dynamic system analysis and initial particles position in particle swarm optimization

  • Campana EF, Fasano G et al (2006b) Particle swarm optimization: efficient globally convergent modifications. In: Proceedings of the III European conference on computational mechanics, solids, structures and coupled problems in engineering, Lisbon, Portugal

  • Chiba K, Makino Y et al (2007) Multidisciplinary design exploration of wing shape for silent supersonic technology demonstrator. AIAA Pap 4167:2007-6

    Google Scholar 

  • Chiba K, Makino Y et al (2008) PSO/GA hybrid method and its application to supersonic-transport wing design. J Comput Sci Technol 2(1):268–280

    Article  Google Scholar 

  • Cox SE, Haftka RT et al (2001) A comparison of global optimization methods for the design of a high-speed civil transport. J Glob Optim 21(4):415–432

    Article  MATH  MathSciNet  Google Scholar 

  • Craig KJ, Kingsley TC (2007) Design optimization of containers for sloshing and impact. Struct Multidisc Optim 33(1):71–87

    Article  Google Scholar 

  • Cramer EJ, Dennis JE et al (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4(4):754–776

    Article  MATH  MathSciNet  Google Scholar 

  • Demko D (2005) Tools for multi-objective and multi-disciplinary optimization in naval ship design. Thesis, Virginia Polytechnic Institute and State University

  • Fletcher R (1987) Practical methods of optimization. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Floudas CA, Pardalos PM (2001) Encyclopedia of optimization. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Fourie PC, Groenwold AA (2002) The particle swarm optimization algorithm in size and shape optimization. Struct Multidisc Optim 23(4):259–267

    Article  Google Scholar 

  • Frank PD, Booker AJ et al (1992) A comparison of optimization and search methods for multidisciplinary design. AIAA Pap 92-4827

  • Giesing JP, Jean-Francois MB (1998) A summary of industry MDO applications and needs. Symposium on multidisciplinary analysis and optimization

  • He J, Zhang G et al (2008) Uncertainty propagation in multi-disciplinary design optimization of undersea vehicles. SAE Paper 2008-01-0218

  • Hulme KF, Bloebaum CL (2000) A simulation-based comparison of multidisciplinary design optimization solution strategies using CASCADE. Struct Multidisc Optim 19(1):17–35

    Article  Google Scholar 

  • Idahosa U, Golubev VV et al (2005). Application of distributed automated MDO environment to aero/acoustic shape optimization of a fan blade. In: 11th AIAA/CEAS aeroacoustics conference (26th aeroacoustics conference), pp 1–14

  • Jansson JO, Shneerson D (1982) The optimal ship size. J Transp Econ Policy 16:217–238

    Google Scholar 

  • Jouhaud JC, Sagaut P et al (2007) A surrogate-model based multidisciplinary shape optimization method with application to a 2D subsonic airfoil. Comput Fluids 36(3):520–529

    Article  MATH  Google Scholar 

  • Karakasis MK, Giannakoglou KC (2006) On the use of metamodel-assisted, multi-objective evolutionary algorithms. Eng Optim 38(8):941–957

    Article  MathSciNet  Google Scholar 

  • Kendall PMH (1972) A theory of optimum ship size. J Transp Econ Policy 6:128–146

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4

  • Kim HM (2001) Target cascading in optimal system design. PhD thesis, Mechanical Engineering, University of Michigan, Ann Arbor

  • Kim IY, de Weck OL (2005) Adaptive weighted-sum method for bi-objective optimization: pareto front generation. Struct Multidisc Optim 29(2):149–158

    Article  Google Scholar 

  • Kim HM, Kokkolaras M et al (2002) Target cascading in vehicle redesign: a class VI truck study. Int J Veh Des 29(3):199–225

    Article  Google Scholar 

  • Kim H, Rideout D et al (2003a) Analytical target cascading in automotive vehicle design. Trans Am Soc Mech Eng J Mech Des 125(3):481–489

    Google Scholar 

  • Kim HM, Michelena NF et al (2003b) Target cascading in optimal system design. J Mech Des (Trans ASME) 125(3):474–480

    Article  Google Scholar 

  • Koh B, George A et al (2006) Parallel asynchronous particle swarm optimization. Int J Numer Methods Eng 67:578–595

    Article  MATH  Google Scholar 

  • Kokkolaras M, Fellini R et al (2002) Extension of the target cascading formulation to the design of product families. Struct Multidisc Optim 24(4):293–301

    Article  Google Scholar 

  • Lee D (1999) Hybrid system approach to optimum design of a ship. AI EDAM 13(01):1–11

    Article  Google Scholar 

  • Lewis K (2002) Multidisciplinary design optimization. Aerosp Am 40(12):42

    Google Scholar 

  • Merkle D, Middendorf M et al (2002) Ant colony optimization for resource-constrained project scheduling. IEEE Trans Evol Comput 6(4):333–346

    Article  Google Scholar 

  • Michelena N, Park H et al (2003) Convergence properties of analytical target cascading. AIAA J 41(5):897–905

    Article  Google Scholar 

  • Mistree F, Smith WF et al (1990) Decision-based design: a contemporary paradigm for ship design. Trans Soc Naval Arch Marine Eng 98:565–597

    Google Scholar 

  • Moles CG, Mendes P et al (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13(11):2467–2474

    Article  Google Scholar 

  • Moraes HB, Vasconcellos JM et al (2007) Multiple criteria optimization applied to high speed catamaran preliminary design. Ocean Eng 34(1):133–147

    Article  Google Scholar 

  • Neu WL, Hughes O et al (2000) A prototype tool for multidisciplinary design optimization of ships. In: Ninth congress of the international maritime association of the Mediterranean, Naples, Italy

  • Papalambros PY, Wilde DJ (2000) Principles of optimal design. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Parashar S, Bloebaum CL (2006) Multi-objective genetic algorithm concurrent subspace optimization (MOGACSSO) for multidisciplinary design. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, pp 1–11

  • Parsons MG, Scott RL (2004) Formulation of multicriterion design optimization problems for solution with scalar numerical optimization methods. J Ship Res 48(1):61–76

    Google Scholar 

  • Parsons MG, Singer DJ et al (1999) A hybrid agent approach for set-based conceptual ship design. In: Proceedings of the international conference on computer applications in shipbuilding, Cambridge, MA, pp 7–11

  • Peri D, Campana EF (2003a) High fidelity models in the multi-disciplinary optimization of a frigate ship. In: 2nd MIT conference on fluid and solid mechanics, Cambridge

  • Peri D, Campana EF (2003b) Multidisciplinary design optimization of a naval surface combatant. J Ship Res 47(1):1–12

    Google Scholar 

  • Peri D, Campana EF (2005) High-fidelity models for multiobjective global optimization in simulation-based design. J Ship Res 49(3):159–175

    Google Scholar 

  • Peri D, Campana EF et al (2001a) Development of CFD-based design optimization architecture. In: 1st MIT conference on fluid and solid mechanics, Cambridge

  • Peri D, Rossetti M et al (2001b) Design optimization of ship hulls via CFD techniques. J Ship Res 45(2):140–149

    Google Scholar 

  • Pinto A, Peri D et al (2007) Multiobjective optimization of a containership using deterministic particle swarm optimization. J Ship Res 51(3):217–228

    Google Scholar 

  • Poli R, Kennedy J et al (2008) Editorial: particle swarms: the second decade. J Artif Evol Appl 2008(3)

  • Ray T, Gokarn RP et al (1995) A global optimization model for ship design. Comput Ind 26(2):175–192

    Article  Google Scholar 

  • Schutte J, Reinbolt J et al (2004) Parallel global optimization with the particle swarm algorithm. Int J Numer Meth Eng 61:2296–2315

    Article  MATH  Google Scholar 

  • Sen P, Yang JB (1998) Multiple criteria decision support in engineering design. Springer, New York

    Google Scholar 

  • Serra M, Venini P (2006) On some applications of ant colony optimization metaheuristic to plane truss optimization. Struct Multidisc Optim 32(6):499–506

    Article  Google Scholar 

  • Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. Evol Program 7:611–616

    Google Scholar 

  • Shi Y, Eberhart RC et al (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation.CEC 99, vol 3

  • Shi Y, Eberhart RC et al (2001) Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 congress on evolutionary computation, vol 1

  • Sinha K (2007) Reliability-based multiobjective optimization for automotive crashworthiness and occupant safety. Struct Multidisc Optim 33(3):255–268

    Article  Google Scholar 

  • Statnikov RB, Matusov JB (1995) Multicriteria optimization and engineering. Chapman & Hall, New York

    Google Scholar 

  • Sun J, Zhang G et al (2006) Multi-disciplinary design optimization under uncertainty for thermal protection system applications. AAIA Paper 2006-7002-547

  • Tahara Y, Tohyama S et al (2006) CFD-based multi-objective optimization method for ship design. Int J Numer Methods Fluids 52(5):499

    Article  MATH  Google Scholar 

  • Tosserams S, Etman LFP et al (2006) An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct Multidisc Optim 31(3):176–189

    Article  MathSciNet  Google Scholar 

  • van den Bergh F, Engelbrecht A (2006) A study of particle swarm optimization particle trajectories. Inf Moksl 176(8):937–971

    MATH  Google Scholar 

  • Venkayya VB (1989) Optimality criteria: a basis for multidisciplinary design optimization. Comput Mech 5(1):1–21

    Article  MATH  Google Scholar 

  • Venter G, Sobieszczanski-Sobieski J (2003) Particle swarm optimization. AIAA J 41(8):1583–1589

    Article  Google Scholar 

  • Venter G, Sobieszczanski-Sobieski J (2004) Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. Struct Multidisc Optim 26(1):121–131

    Article  Google Scholar 

  • Venter G, Sobieszczanki-Sobieksi J (2006) A parallel particle swarm optimization algorithm accelerated by asynchronous evaluations. J Aero Comput Inform Commun 3:123–137

    Article  Google Scholar 

  • Vianese J (2004) Multidisciplinary optimization of naval ship design and mission effectiveness, vol 85. Defense Technical Information Center, US Dept of Defense, Washington, DC

  • Villagra M, Baran B (2007) Ant colony optimization with adaptive fitness function for satisfiability testing. Lect Notes Comput Sci 4576:352

    Article  MathSciNet  Google Scholar 

  • Vlahopoulos N, Wang A et al (2008) Engaging structural-acoustic simulations in multi-discipline optimization. In: NOISE-CON 2008, Dearborn, MI

  • Wang J, Yin Z (2008) A ranking selection-based particle swarm optimizer for engineering design optimization problems. Struct Multidisc Optim 37(2):131–147

    Article  Google Scholar 

  • Yang YS, Park CK et al (2007) A study on the preliminary ship design method using deterministic approach and probabilistic approach including hull form. Struct Multidisc Optim 33(6):529–539

    Article  MathSciNet  Google Scholar 

  • Yi SI, Shin JK et al (2008) Comparison of MDO methods with mathematical examples. Struct Multidisc Optim 35(5):391–402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Hart.

Additional information

A version of this paper will be presented at SAE World Congress, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, C.G., Vlahopoulos, N. An integrated multidisciplinary particle swarm optimization approach to conceptual ship design. Struct Multidisc Optim 41, 481–494 (2010). https://doi.org/10.1007/s00158-009-0414-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0414-0

Keywords

Navigation