Log in

Robust design with arbitrary distributions using Gauss-type quadrature formula

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper, we present the Gauss-type quadrature formula as a rigorous method for statistical moment estimation involving arbitrary input distributions and further extend its use to robust design optimization. The mathematical background of the Gauss-type quadrature formula is introduced and its relation with other methods such as design of experiments (DOE) and point estimate method (PEM) is discussed. Methods for constructing one dimensional Gauss-type quadrature formula are summarized and the insights are provided. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed for two different multi-dimensional integration methods, the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. Through several examples, it is shown that the Gauss-type quadrature formula can be effectively used in robust design involving various non-normal distributions. The proposed design sensitivity analysis significantly reduces the number of function calls of robust optimization using the TPQ formulae, while using the UDR method, the savings of function calls are observed only in limited situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover, New York

    Google Scholar 

  • Chen W, Allen JK, Tsui KL, Mistree F (1996) Procedure for robust design: minimizing variations caused by noise factors and control factors. J Mech Design 118:478–485

    Article  Google Scholar 

  • Choi JH, Lee WH, Park JJ, Youn BD (2008) A study on robust design optimization of layered plate bonding process considering uncertainties. Struct Multidisc Optim 35:531–540

    Article  Google Scholar 

  • D’Errico JR, Zaino NA (1988) Statistical tolerancing using a modification of Taguchi’s method. Technometrics 30:397–405

    Article  Google Scholar 

  • Du X, Chen W (2000) Towards a better understanding of modeling feasibility robustness in engineering design. J Mech Design 122:385–394

    Article  Google Scholar 

  • Engels H (1980) Numerical quadrature and cubature. Academic, London

    MATH  Google Scholar 

  • Evans DH (1967) An application of numerical integration techniques to statistical tolerancing. Technometrics 9:441–456

    Article  MathSciNet  Google Scholar 

  • Gautschi W (1994) Algorithm 726; orthpol—a package of routines for generating orthogonal polynomials and gauss-type quadrature rules. ACM T Math Software 20:21–62

    Article  MATH  Google Scholar 

  • Hahn GJ, Shapiro SS (1967) Statistical models in engineering. Wiley, New York

    Google Scholar 

  • Han JS, Kwak BM (2004) Robust optimization using a gradient index: MEMS applications. Struct Multidisc Optim 27:469–478

    Article  Google Scholar 

  • Harr ME (1989) Probability estimate for multivariate analysis. Appl Math Model 13:313–318

    Article  Google Scholar 

  • Hong HP (1998) An efficient point estimate method for probabilistic analysis. Reliab Eng Syst Safe 59:261–267

    Article  Google Scholar 

  • Huang B, Du X (2007) Analytical robustness assessment for robust design. Struct Multidisc Optim 34:123–137

    Article  Google Scholar 

  • Jung DH, Lee BC (2002) Development of a simple and efficient method for robust optimization. Int J Numer Meth Eng 53:2201–2215

    Article  MATH  MathSciNet  Google Scholar 

  • Krylov VI (1962) Approximate calculation of integrals. Translated by AH Stroud. Macmillan, New York

    MATH  Google Scholar 

  • Kugele SC, Trosset MW, Watson LT (2008) Numerical integration in statistical decision-theoretic methods for robust design optimization. Struct Multidisc Optim 36:457–475

    Article  MathSciNet  Google Scholar 

  • Lee SH, Chen W (2008) A comparative study of uncertainty propagation methods for black-box type problems. Struct Multidisc Optim. doi:10.1007/s00158-008-0234-7

  • Lee SH, Kwak BM (2006) Response surface augmented moment method for efficient reliability analysis. Struct Saf 28:261–272

    Article  Google Scholar 

  • Lee KH, Park GJ (2001) Robust optimization considering tolerances of design variables. Comput Struct 79:77–86

    Article  Google Scholar 

  • Lee I, Choi KK, Du L, Gorsich D (2007) Dimension reduction method for reliability-based robust design optimization. Comput Struct 86:1550–1562. doi:10.1016/j.compstruc.2007.05.020

    Article  Google Scholar 

  • Lee SH, Choi HS, Kwak BM (2008) Multi-level design of experiments for statistical moment and probability calculation. Struct Multidisc Optim. doi:10.1007/s00158-007-0215-2

  • Li KS (1992) Point-estimate method for calculating statistical moments. J Eng Mech ASCE 118:1506–1511

    Article  Google Scholar 

  • Liu PL, Kiureghian AD (1986) Multivariate distribution models with prescribed marginals and covariances. Probabilist Eng Mech 1:105–112

    Article  Google Scholar 

  • Messac A, Yahaya I (2002) Multiobjective robust design using physical programming. Struct Multidisc Optim 23:357–371

    Article  Google Scholar 

  • Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for robust optimal design. J Mech Design 115:74–80

    Article  Google Scholar 

  • Phadke MS (1995) Quality engineering using robust design. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Rahman S, Xu H (2004) A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilist Eng Mech 19:393–408

    Article  Google Scholar 

  • Ramakrishnan B, Rao SS (1996) A general loss function based optimization procedure for robust design. Eng Optimiz 25:255-276

    Article  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenblueth E (1981) Two point estimates in probabilities. Appl Math Model 5:329–335

    Article  MATH  MathSciNet  Google Scholar 

  • Seo HS, Kwak BM (2002) Efficient statistical tolerance analysis for general distributions using three-point information. Int J Prod Res 40:931–944

    Article  MATH  Google Scholar 

  • Sundaresan S, Ishii K, Houser DR (1995) A robust optimization procedure with variations on design variables and constraints. Eng Optimiz 24:101–117

    Article  Google Scholar 

  • Taguchi G (1978) Performance analysis design. Int J Prod Res 16:521–530

    Article  Google Scholar 

  • Taguchi G, Wu Y (1980) Introduction to off-line quality control. Central Japan Quality Control Association, Nagoya

    Google Scholar 

  • Wang L, Beeson D, Wiggs G (2004) Efficient and accurate point estimate method for moments and probability distribution estimation. In: Proceedings of 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, 30 Aug–1 Sep 2004. Albany, New York, USA

    Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics. Int J Numer Meth Eng 61:1992–2019

    Article  MATH  Google Scholar 

  • Youn BD, ** Z (2008) Reliability-based robust design optimization using the eigenvector dimension reduction (EDR) method. Struct Multidisc Optim. doi:10.1007/s00158-008-0239-2

  • Zhao YG, Ono T (2001) Moment methods for structural reliability. Struct Saf 23:47–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Chen, W. & Kwak, B.M. Robust design with arbitrary distributions using Gauss-type quadrature formula. Struct Multidisc Optim 39, 227–243 (2009). https://doi.org/10.1007/s00158-008-0328-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-008-0328-2

Keywords

Navigation