Log in

Stroke volume determination using transcardiopulmonary thermodilution and arterial pulse contour analysis in severe aortic valve disease

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Transcardiopulmonary thermodilution (TPTD, SVTD) as well as calibrated (SVPC CAL) and uncalibrated (SVPC UNCAL) arterial pulse contour analysis (PC) are increasingly promoted as less-invasive technologies to measure stroke volume (SV) but their reliability in aortic valve disease was unknown. The objective of this prospective study was to investigate the validity of three less-invasive techniques to assess SV in conditions involving aortic stenosis (AS) and valvuloplasty-induced aortic insufficiency (AI) compared with transesophageal echocardiography.

Methods

In 18 patients undergoing transcatheter aortic valve implantation, SVTD and SVPC CAL were determined using a central pressure signal via the brachial artery and SVPC UNCAL using a peripheral radial signal.

Results

In aortic valve dysfunction TPTD achieved adequate reproducibility (concordance correlation coefficient (CCC): AS 0.84; AI 0.82) and agreement (percentage error (PE): AS 26.3 %; AI 26.2 %) with the reference technique. In severe AS, SVPC CAL (PE 25.7 %; CCC 0.85) but not SVPC UNCAL (PE 50.4 %; CCC 0.38) was reliable. Neither calibrated nor uncalibrated PC (SVPC CAL: PE 51.5 %; CCC 0.49; SVPC UNCAL: PE 61.9 %; CCC 0.22) was valid in AI. Trending ability to hemodynamic changes, quantified by the ΔSV vector and the angle θ, was acceptable for each measurement modality.

Conclusions

Transcardiopulmonary thermodilution is valid in aortic valve dysfunction. Calibration of PC substantially improves reliability in aortic valve disease. Calibrated PC is valid in severe AS. Valvuloplasty-induced AI seriously confounds PC measurements. In uncalibrated PC approaches, the relative SV trend is superior to single absolute values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PS (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97:820–826

    Article  PubMed  Google Scholar 

  2. Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33:96–103

    Article  PubMed  Google Scholar 

  3. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402

    Article  PubMed  Google Scholar 

  4. Rhodes A, Cecconi M, Hamilton M, Poloniecki J, Woods J, Boyd O, Bennett D, Grounds RM (2010) Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med 36:1327–1332

    Article  PubMed  Google Scholar 

  5. Harvey S, Young D, Brampton W, Cooper AB, Doig G, Sibbald W, Rowan K (2006) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 3:CD003408

  6. Alhashemi JA, Cecconi M, Hofer CK (2011) Cardiac output monitoring: an integrative perspective. Crit Care 15:214

    Article  PubMed  Google Scholar 

  7. Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK (2010) Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg 110:799–811

    Article  PubMed  Google Scholar 

  8. Goedje O, Hoke K, Goetz AE, Felbinger TW, Reuter DA, Reichart B, Friedl R, Hannekum A, Pfeiffer UJ (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30:52–58

    Article  Google Scholar 

  9. Reuter DA, Goetz AE (2005) Measurement of cardiac output. Anaesthesist 54:1135–1151; quiz 1152–1133

    Google Scholar 

  10. Felbinger TW, Reuter DA, Eltzschig HK, Moerstedt K, Goedje O, Goetz AE (2002) Comparison of pulmonary arterial thermodilution and arterial pulse contour analysis: evaluation of a new algorithm. J Clin Anesth 14:296–301

    Article  PubMed  Google Scholar 

  11. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27:2407–2412

    Article  PubMed  CAS  Google Scholar 

  12. Rauch H, Muller M, Fleischer F, Bauer H, Martin E, Bottiger BW (2002) Pulse contour analysis versus thermodilution in cardiac surgery patients. Acta Anaesthesiol Scand 46:424–429

    Article  PubMed  CAS  Google Scholar 

  13. Rodig G, Prasser C, Keyl C, Liebold A, Hobbhahn J (1999) Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth 82:525–530

    Article  PubMed  CAS  Google Scholar 

  14. Sander M, von Heymann C, Foer A, von Dossow V, Grosse J, Dushe S, Konertz WF, Spies CD (2005) Pulse contour analysis after normothermic cardiopulmonary bypass in cardiac surgery patients. Crit Care 9:R729–R734

    Article  PubMed  Google Scholar 

  15. Zollner C, Haller M, Weis M, Morstedt K, Lamm P, Kilger E, Goetz AE (2000) Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis: a prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth 14:125–129

    Article  PubMed  CAS  Google Scholar 

  16. Breukers RM, Groeneveld AB, de Wilde RB, Jansen JR (2009) Transpulmonary versus continuous thermodilution cardiac output after valvular and coronary artery surgery. Interact Cardiovasc Thorac Surg 9:4–8

    Article  PubMed  Google Scholar 

  17. Compton FD, Zukunft B, Hoffmann C, Zidek W, Schaefer JH (2008) Performance of a minimally invasive uncalibrated cardiac output monitoring system (Flotrac/Vigileo) in haemodynamically unstable patients. Br J Anaesth 100:451–456

    Article  PubMed  CAS  Google Scholar 

  18. De Backer D, Marx G, Tan A, Junker C, Van Nuffelen M, Huter L, Ching W, Michard F, Vincent JL (2011) Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med 37:233–240

    Article  PubMed  Google Scholar 

  19. Lorsomradee S, Cromheecke S, De Hert SG (2007) Uncalibrated arterial pulse contour analysis versus continuous thermodilution technique: effects of alterations in arterial waveform. J Cardiothorac Vasc Anesth 21:636–643

    Article  PubMed  Google Scholar 

  20. Meng L, Tran NP, Alexander BS, Laning K, Chen G, Kain ZN, Cannesson M (2011) The impact of phenylephrine, ephedrine, and increased preload on third-generation Vigileo-FloTrac and esophageal Doppler cardiac output measurements. Anesth Analg 113:751–757

    PubMed  CAS  Google Scholar 

  21. Monnet X, Anguel N, Jozwiak M, Richard C, Teboul JL (2012) Third-generation FloTrac/Vigileo does not reliably track changes in cardiac output induced by norepinephrine in critically ill patients. Br J Anaesth 108:615–622

    Article  PubMed  CAS  Google Scholar 

  22. Sander M, Spies CD, Grubitzsch H, Foer A, Muller M, von Heymann C (2006) Comparison of uncalibrated arterial waveform analysis in cardiac surgery patients with thermodilution cardiac output measurements. Crit Care 10:R164

    Article  PubMed  Google Scholar 

  23. Staier K, Wiesenack C, Gunkel L, Keyl C (2008) Cardiac output determination by thermodilution and arterial pulse waveform analysis in patients undergoing aortic valve replacement. Can J Anaesth 55:22–28

    Article  PubMed  Google Scholar 

  24. Rosengart TK, Feldman T, Borger MA, Vassiliades TA Jr, Gillinov AM, Hoercher KJ, Vahanian A, Bonow RO, O’Neill W (2008) Percutaneous and minimally invasive valve procedures: a scientific statement from the American Heart Association Council on Cardiovascular Surgery and Anesthesia, Council on Clinical Cardiology, Functional Genomics and Translational Biology Interdisciplinary Working Group, and Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 117:1750–1767

    Article  PubMed  Google Scholar 

  25. Vahanian A, Alfieri O, Al-Attar N, Antunes M, Bax J, Cormier B, Cribier A, De JP, Fournial G, Kappetein AP, Kovac J, Ludgate S, Maisano F, Moat N, Mohr F, Nataf P, Pierard L, Pomar JL, Schofer J, Tornos P, Tuzcu M, van HB, Von Segesser LK, Walther T (2008) Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 29:1463–1470

  26. Huter L, Schwarzkopf KR, Preussler NP, Schubert H, Schreiber T (2007) The level of cardiac output affects the relationship and agreement between pulmonary artery and transpulmonary aortic thermodilution measurements in an animal model. J Cardiothorac Vasc Anesth 21:659–663

    Article  PubMed  Google Scholar 

  27. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  PubMed  CAS  Google Scholar 

  28. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM (2009) Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies–with specific reference to the measurement of cardiac output. Crit Care 13:201

    Article  PubMed  Google Scholar 

  29. Squara P, Cecconi M, Rhodes A, Singer M, Chiche JD (2009) Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med 35:1801–1808

    Article  PubMed  Google Scholar 

  30. Cecconi M, Dawson D, Grounds RM, Rhodes A (2009) Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Med 35:498–504

    Article  PubMed  CAS  Google Scholar 

  31. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  PubMed  CAS  Google Scholar 

  32. Critchley LA, Lee A, Ho AM (2010) A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg 111:1180–1192

    Article  PubMed  Google Scholar 

  33. Malbrain ML, De Potter TJ, Dits H, Reuter DA (2010) Global and right ventricular end-diastolic volumes correlate better with preload after correction for ejection fraction. Acta Anaesthesiol Scand 54:622–631

    Article  PubMed  CAS  Google Scholar 

  34. Heerdt PM, Blessios GA, Beach ML, Hogue CW (2001) Flow dependency of error in thermodilution measurement of cardiac output during acute tricuspid regurgitation. J Cardiothorac Vasc Anesth 15:183–187

    Article  PubMed  CAS  Google Scholar 

  35. Hillis LD, Firth BG, Winniford MD (1986) Comparison of thermodilution and indocyanine green dye in low cardiac output or left-sided regurgitation. Am J Cardiol 57:1201–1202

    Article  PubMed  CAS  Google Scholar 

  36. Wouters PF, Quaghebeur B, Sergeant P, Van Hemelrijck J, Vandermeersch E (2005) Cardiac output monitoring using a brachial arterial catheter during off-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth 19:160–164

    Article  PubMed  Google Scholar 

  37. Schramm S, Albrecht E, Frascarolo P, Chassot PG, Spahn DR (2010) Validity of an arterial pressure waveform analysis device: does the puncture site play a role in the agreement with intermittent pulmonary artery catheter thermodilution measurements? J Cardiothorac Vasc Anesth 24:250–256

    Article  PubMed  Google Scholar 

  38. Orme RM, Pigott DW, Mihm FG (2004) Measurement of cardiac output by transpulmonary arterial thermodilution using a long radial artery catheter. A comparison with intermittent pulmonary artery thermodilution. Anaesthesia 59(6):590–594

    Article  PubMed  Google Scholar 

  39. Parra V, Fita G, Rovira I, Matute P, Gomar C, Pare C (2008) Transoesophageal echocardiography accurately detects cardiac output variation: a prospective comparison with thermodilution in cardiac surgery. Eur J Anaesthesiol 25:135–143

    Article  PubMed  CAS  Google Scholar 

  40. Nowak M, Rosenberger P, Felbinger TW, Goetz AE, Shernan SK, Unertl K, Eltzschig HK (2006) Perioperative echocardiography: basic principles. Anaesthesist 55:337–361

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

AEG and DAR are members of the Medical Advisory Board of Pulsion Medical Systems. DAR has received honoraria for lectures from Edwards Lifesciences. The study was financed solely by institutional sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Petzoldt.

Additional information

This article is discussed in the editorial available at: doi:10.1007/s00134-012-2802-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

134_2012_2786_MOESM1_ESM.tif

Supplementary material 1 (TIFF 375 kb) Online Resource 1 Regression and correlation analysis, scatter plots, X-axis SV measured with transesophageal echocardiography (SVTEE), Y-axis SV calculated with transcardiopulmonary thermodilution (SVTD, top), calibrated (SVPC CAL, middle), and uncalibrated arterial pulse contour analysis (SVPC UNCAL, bottom) at predefined measurement times from the left to the right with normal prosthetic valve function (post-interventional), with severe aortic stenosis (pre-interventional), and with aortic insufficiency (post-valvuloplasty)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzoldt, M., Riedel, C., Braeunig, J. et al. Stroke volume determination using transcardiopulmonary thermodilution and arterial pulse contour analysis in severe aortic valve disease. Intensive Care Med 39, 601–611 (2013). https://doi.org/10.1007/s00134-012-2786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-012-2786-7

Keywords

Navigation