Log in

Influence of hydroxyethyl starch (HES) 130/0.4 on hemostasis as measured by viscoelastic device analysis: a systematic review

  • Systematic Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Hydroxyethyl starch solutions (HES) are plasma volume expanders which affect hemostasis. Newer HES 130/0.4 is said to be safer. Reevaluation of published evidence is necessary after the recent retraction of studies.

Methods

Systematic review of studies assessing HES 130/0.4 effects on hemostasis by thrombelastography (TEG, ROTEM) or Sonoclot (SCR) in comparison with crystalloid or albumin control fluids was performed. Only studies which provided statistical comparisons between study fluids were analyzed. Studies were divided into in vitro or in vivo hemodilution studies. We assessed study quality, HES effects which differed significantly from controls, values outside normal range, degree of hemodilution, and cumulative HES dose.

Results

Seventeen in vitro and seven in vivo hemodilution studies were analyzed. Four studies reported quality control measures.

Nineteen studies (all 15 ROTEM studies, 3 of 5 in vitro TEG, and 1 of 2 SCR studies) showed a significant hypocoagulatory effect of HES 130/0.4 on clot formation, while clotting time was not uniformly affected. Three in vivo TEG studies with low HES doses or cancer patients found mixed or nonsignificant results. In studies which provided normal ranges (n = 9), more values were outside normal ranges in the HES than in the control groups (87/122 vs. 58/122, p < 0.001). Dose effects were apparent in the in vitro studies, which investigated higher dilutions up to 80%. In vivo studies were fewer and did not investigate doses >40 ml/kg.

Conclusions

HES 130/0.4 administration results in a weaker and smaller clot. Until results from well-designed clinical trials are available, safer fluids should be chosen for patients with impaired coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Levi M, Jonge E (2007) Clinical relevance of the effects of plasma expanders on coagulation. Semin Thromb Hemost 33:810–815

    Article  PubMed  CAS  Google Scholar 

  2. Dhainaut JF, Shorr AF, Macias WL, Kollef MJ, Levi M, Reinhart K, Nelson DR (2005) Dynamic evolution of coagulopathy in the first day of severe sepsis: relationship with mortality and organ failure. Crit Care Med 33:341–348

    Article  PubMed  CAS  Google Scholar 

  3. de Jonge E, Levi M (2001) Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med 29:1261–1267

    Article  PubMed  Google Scholar 

  4. Kozek-Langenecker SA (2009) Influence of fluid therapy on the haemostatic system of intensive care patients. Best Pract Res 23:225–236

    Article  CAS  Google Scholar 

  5. Egli GA, Zollinger A, Seifert B, Popovic D, Pasch T, Spahn DR (1997) Effect of progressive haemodilution with hydroxyethyl starch, gelatin and albumin on blood coagulation. Br J Anaesth 78:684–689

    PubMed  CAS  Google Scholar 

  6. Gorton HJ, Warren ER, Simpson NA, Lyons GR, Columb MO (2000) Thromboelastography identifies sex-related differences in coagulation. Anesth Analg 91:1279–1281

    PubMed  CAS  Google Scholar 

  7. Wilkes MM, Navickis RJ, Sibbald WJ (2001) Albumin versus hydroxyethyl starch in cardiopulmonary bypass surgery: a meta-analysis of postoperative bleeding. Ann Thorac Surg 72:527–533

    Article  PubMed  CAS  Google Scholar 

  8. Hartog CS, Kohl M, Reinhart K (2011) A systematic review of third-generation hydroxyethyl starch (HES 130/0.4) in resuscitation: safety not adequately addressed. Anesth Analg 112:635–645

    Article  PubMed  CAS  Google Scholar 

  9. Dai Y, Lee A, Critchley LA, White PF (2009) Does thromboelastography predict postoperative thromboembolic events? A systematic review of the literature. Anesth Analg 108:734–742

    Article  PubMed  Google Scholar 

  10. Afshari A, Wikkelso A, Brok J, Moller A, Wetterslev J (2009) Thrombelastography (TEG) or Thrombelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion (Protocol). Cochrane database of systematic reviews (Online):CD007871

  11. Shafer SL (2010) Notice of retraction. Anesth Analg 111:1567

    Article  PubMed  Google Scholar 

  12. Editors-in-Chief Statement Regarding IRB Approval of Clinical Trials by Joachim Boldt. http://www.aaeditor.org/EICJointStatement.pdf; assessed 16 Feb 2011 DOI

  13. Ganter MT, Hofer CK (2008) Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth Analg 106:1366–1375

    Article  PubMed  Google Scholar 

  14. Reitsma JB, Rutjes AWS, Whiting P, Vlassov VV, Leeflang MMG, Deeks JJ, (2009. Available from: http://srdta.cochrane.org/.) Chapter 9: assessing methodological quality. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 100 DOI

  15. Fries D, Innerhofer P, Klingler A, Berresheim U, Mittermayr M, Calatzis A, Schobersberger W (2002) The effect of the combined administration of colloids and lactated Ringer’s solution on the coagulation system: an in vitro study using thrombelastograph coagulation analysis (ROTEG). Anesth Analg 94:1280–1287

    Article  PubMed  CAS  Google Scholar 

  16. Nielsen VG (2005) Colloids decrease clot propagation and strength: role of factor XIII-fibrin polymer and thrombin–fibrinogen interactions. Acta Anaesthesiol Scand 49:1163–1171

    Article  PubMed  CAS  Google Scholar 

  17. Roche AM, James MF, Bennett-Guerrero E, Mythen MG (2006) A head-to-head comparison of the in vitro coagulation effects of saline-based and balanced electrolyte crystalloid and colloid intravenous fluids. Anesth Analg 102:1274–1279

    Article  PubMed  Google Scholar 

  18. Roche AM, James MF, Bennett-Guerrero E, Mythen MG (2006) Calcium supplementation of saline-based colloids does not produce equivalent coagulation profiles to similarly balanced salt preparations. J Cardiothorac Vasc Anesth 20:807–811

    Article  PubMed  CAS  Google Scholar 

  19. Viuff D, Lauritzen B, Pusateri AE, Andersen S, Rojkjaer R, Johansson PI (2008) Effect of haemodilution, acidosis, and hypothermia on the activity of recombinant factor VIIa (NovoSeven). Br J Anaesth 101:324–331

    Article  PubMed  CAS  Google Scholar 

  20. Fries D, Innerhofer P, Reif C, Streif W, Klingler A, Schobersberger W, Velik-Salchner C, Friesenecker B (2006) The effect of fibrinogen substitution on reversal of dilutional coagulopathy: an in vitro model. Anesth Analg 102:347–351

    Article  PubMed  CAS  Google Scholar 

  21. Casutt M, Kristoffy A, Schuepfer G, Spahn DR, Konrad C (2010) Effects on coagulation of balanced (130/0.42) and non-balanced (130/0.4) hydroxyethyl starch or gelatin compared with balanced Ringer’s solution: an in vitro study using two different viscoelastic coagulation tests ROTEMTM and SONOCLOTTM. Br J Anaesth 105:273–281

    Article  PubMed  CAS  Google Scholar 

  22. Godier A, Durand M, Smadja D, Jeandel T, Emmerich J, Samama CM (2010) Maize- or potato-derived hydroxyethyl starches: is there any thromboelastometric difference? Acta Anaethesiol Scand 54:1241–1247

    Article  CAS  Google Scholar 

  23. Schramko AA, Suojaranta-Ylinen RT, Kuitunen AH, Kukkonen SI, Niemi TT (2009) Rapidly degradable hydroxyethyl starch solutions impair blood coagulation after cardiac surgery: a prospective randomized trial. Anesth Analg 108:30–36

    Article  PubMed  CAS  Google Scholar 

  24. Jamnicki M, Zollinger A, Seifert B, Popovic D, Pasch T, Spahn DR (1998) Compromised blood coagulation: an in vitro comparison of hydroxyethyl starch 130/0.4 and hydroxyethyl starch 200/0.5 using thrombelastography. Anesth Analg 87:989–993

    PubMed  CAS  Google Scholar 

  25. Entholzner EK, Mielke LL, Calatzis AN, Feyh J, Hipp R, Hargasser SR (2000) Coagulation effects of a recently developed hydroxyethyl starch (HES 130/0.4) compared to hydroxyethyl starches with higher molecular weight. Acta Anaesthesiol Scand 44:1116–1121

    Article  PubMed  CAS  Google Scholar 

  26. Fenger-Eriksen C, Anker-Moller E, Heslop J, Ingerslev J, Sorensen B (2005) Thrombelastographic whole blood clot formation after ex vivo addition of plasma substitutes: improvements of the induced coagulopathy with fibrinogen concentrate. Br J Anaesth 94:324–329

    Article  PubMed  CAS  Google Scholar 

  27. Sossdorf M, Marx S, Schaarschmidt B, Otto GP, Claus RA, Reinhart K, Hartog CS, Losche W (2009) HES 130/0.4 impairs haemostasis and stimulates pro-inflammatory blood platelet function. Crit Care (London, England) 13:208

    Article  Google Scholar 

  28. Konrad CJ, Markl TJ, Schuepfer GK, Schmeck J, Gerber HR (2000) In vitro effects of different medium molecular hydroxyethyl starch solutions and lactated Ringer’s solution on coagulation using SONOCLOT. Anesth Analg 90:274–279

    PubMed  CAS  Google Scholar 

  29. Niemi TT, Suojaranta-Ylinen RT, Kukkonen SI, Kuitunen AH (2006) Gelatin and hydroxyethyl starch, but not albumin, impair hemostasis after cardiac surgery. Anesth Analg 102:998–1006

    Article  PubMed  CAS  Google Scholar 

  30. Choi YS, Shim JK, Hong SW, Kim JC, Kwak YL (2010) Comparing the effects of 5% albumin and 6% hydroxyethyl starch 130/0.4 on coagulation and inflammatory response when used as priming solutions for cardiopulmonary bypass. Minerva Anestesiol 76:584–591

    PubMed  CAS  Google Scholar 

  31. Felfernig M, Franz A, Braunlich P, Fohringer C, Kozek-Langenecker SA, Felfernig M, Franz A, Braunlich P, Fohringer C, Kozek-Langenecker SA (2003) The effects of hydroxyethyl starch solutions on thromboelastography in preoperative male patients. Acta Anaesthesiol Scand 47:70–73

    Article  PubMed  CAS  Google Scholar 

  32. ** SL, Yu BW (2010) Effects of acute hypervolemic fluid infusion of hydroxyethyl starch and gelatin on hemostasis and possible mechanisms. Clin Appl Thromb Hemost 16:91–98

    Google Scholar 

  33. James MF, Michell WL, Joubert IA, Nicol AJ, Navsaria PH, Gillespie RS (2011) Resuscitation with hydroxyethyl starch improves renal function and lactate clearance in penetrating trauma in a randomized controlled study: the FIRST trial (Fluids in Resuscitation of Severe Trauma). Br J Anaesth. doi:10.1093/bja/aer229

  34. Bolliger D, Gorlinger K, Tanaka KA (2010) Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiology 113:1205–1219

    Article  PubMed  Google Scholar 

  35. Wehrum MJ, Hines JF, Hayes EB, Kost ER, Hall KL, Paidas MJ (2010) Comparative assessment of hypercoagulability in women with and without gynecologic malignancies using the thromboelastograph coagulation analyzer. Blood Coagul Fibrinolysis 21:140–143

    Article  PubMed  CAS  Google Scholar 

  36. Bang SR, Kim YH, Kim GS (2010) The effects of in vitro hemodilution with 6% hydroxyethyl starch (HES) (130/0.4) solution on thrombelastograph analysis in patients undergoing liver transplantation. Clin Transplant 25:450–456

    Google Scholar 

  37. Nielsen VG (2005) Antithrombin efficiency is maintained in vitro in human plasma following dilution with hydroxyethyl starches. Blood Coagul Fibrinolysis 16:319–322

    Article  PubMed  CAS  Google Scholar 

  38. Nielsen VG (2007) High-molecular-weight hydroxyethyl starch accelerates kallikrein-dependent clot initiation. J Trauma 62:1491–1494

    Article  PubMed  CAS  Google Scholar 

  39. Schols SE, Feijge MA, Lance MD, Hamulyak K, ten Cate H, Heemskerk JW, van Pampus EC (2008) Effects of plasma dilution on tissue-factor-induced thrombin generation and thromboelastography: partly compensating role of platelets. Transfusion 48:2384–2394

    Article  PubMed  CAS  Google Scholar 

  40. Ansari T, Riad W (2010) The effect of haemodilution with 6% hydroxyethyl starch (130/0.4) on haemostasis in pregnancy: an in vitro assessment using thromboelastometry. Eur J Anaesthesiol 27:304–305

    Article  PubMed  Google Scholar 

  41. Brinkman AC, Romijn JW, van Barneveld LJ, Greuters S, Veerhoek D, Vonk AB, Boer C (2010) Profound effects of cardiopulmonary bypass priming solutions on the fibrin part of clot formation: an ex vivo evaluation using rotation thromboelastometry. J Cardiothorac Vasc Anesth 24:422–426

    Article  PubMed  CAS  Google Scholar 

  42. De Lorenzo C, Calatzis A, Welsch U, Heindl B (2006) Fibrinogen concentrate reverses dilutional coagulopathy induced in vitro by saline but not by hydroxyethyl starch 6%. Anesth Analg 102:1194–1200

    Article  PubMed  Google Scholar 

  43. Niemi TT, Kuitunen AH, Niemi TT, Kuitunen AH (2005) Artificial colloids impair haemostasis. An in vitro study using thromboelastometry coagulation analysis. Acta Anaesthesiol Scand 49:373–378

    Article  PubMed  CAS  Google Scholar 

  44. Sossdorf M, Appelt A, Schaarschmidt B, Döring S, Claus RA, Hartog C, Lösche W (2008) Hydroxyethyl starch solutions impair clot formation and platelet aggregation but enhance platelet surface receptor expression. Hämatologie 28:A82

    Google Scholar 

  45. Weiss G, Lison S, Spannagl M, Heindl B (2010) Expressiveness of global coagulation parameters in dilutional coagulopathy. Br J Anaesth 105:429–436

    Article  PubMed  CAS  Google Scholar 

  46. Haas T, Preinreich A, Oswald E, Pajk W, Berger J, Kuehbacher G, Innerhofer P (2007) Effects of albumin 5% and artificial colloids on clot formation in small infants. Anaesthesia 62:1000–1007

    Article  PubMed  CAS  Google Scholar 

  47. Mittermayr M, Streif W, Haas T, Fries D, Velik-Salchner C, Klingler A, Oswald E, Bach C, Schnapka-Koepf M, Innerhofer P (2007) Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg 105:905–917

    Article  PubMed  CAS  Google Scholar 

  48. Schramko A, Suojaranta-Ylinen R, Kuitunen A, Raivio P, Kukkonen S, Niemi T (2010) Hydroxyethylstarch and gelatin solutions impair blood coagulation after cardiac surgery: a prospective randomized trial. Br J Anaesth 104:691–697

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contributions of Dr. Shasha Chen for Chinese language translation and of Prof. Don Bredle for English language editing. Support was provided solely from institutional and/or departmental sources.

Conflict of Interest

C.S.H. and D.R. declare no conflicts of interest. W.L. has in the past received study support, honoraria, and travel funding from CSL Behring, Germany and Pentapharm Germany. M.H. received speaker fees and travel costs from CSL Behring. K.R. has in the past received consultancy fees from B. Braun Melsungen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Reinhart.

Additional information

C. S. Hartog and D. Reuter contributed equally to this work.

Electronic supplementary material

Appendix

Appendix

Electronic search strategy

#:

Search

1:

visco elastic or thrombelastography or thrombelastometry or ROTEM or ROTEG or Sonoclot or TEG.

2:

hextend or hespan or “hydroxyethyl starch” or hetastarch or pentaspan or hemohes or pentafraction or expafusin or voluven or tetrastarch or haes steril or elohes or elohaes or plasmasteril

3:

animals not human

4:

1 and 2

5:

4 not 3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartog, C.S., Reuter, D., Loesche, W. et al. Influence of hydroxyethyl starch (HES) 130/0.4 on hemostasis as measured by viscoelastic device analysis: a systematic review. Intensive Care Med 37, 1725–1737 (2011). https://doi.org/10.1007/s00134-011-2385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-011-2385-z

Keywords

Navigation