Log in

Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Lanuoma and Cuona sediment-hosted Pb-Zn deposits hosted by Upper Triassic limestone and sandstone, respectively, are located in the Changdu area, SW China. Mercury concentrations and Hg isotopic compositions from sulfide minerals and potential source rocks (e.g., the host sedimentary rocks and the metamorphic basement) were investigated to constrain metal sources and mineralization processes. In both deposits, sulfide minerals have higher mercury (Hg) concentrations (0.35 to 1185 ppm) than the metamorphic basement rocks (0.05 to 0.15 ppm) and sedimentary rocks (0.02 to 0.08 ppm). Large variations of mass-dependent fractionation (3.3‰ in δ202Hg) and mass-independent fractionation (0.3‰ in Δ199Hg) of Hg isotopes were observed. Sulfide minerals have Hg isotope signatures that are similar to the hydrothermal altered rocks around the deposit, and similar to the metamorphic basement, but different from barren sedimentary rocks. The variation of ∆199Hg suggests that Hg in sulfides was mainly derived from the underlying metamorphic basement. Mercury isotopes could be a geochemical tracer in understanding metal sources in hydrothermal ore deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bergquist BA, Blum JD (2007) Mass-dependent and independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318:417–420

    Article  Google Scholar 

  • Bergquist BA, Blum JD (2009) The odds and evens of mercury isotopes, applications of mass-dependent and mass-independent isotope fractionation. Elements 5:353–357

    Article  Google Scholar 

  • Blum JD, Anbar AD (2010) Mercury isotopes in the late Archean Mount McRae Shale. Geochim Cosmochim Acta 74:A98–A98

    Google Scholar 

  • Blum JD, Bergquist BA (2007) Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem 388:353–359

    Article  Google Scholar 

  • Blum JD, Sherman LS, Johnson MW (2014) Mercury isotopes in earth and environmental sciences. Annu Rev Earth Planet Sci 42:249–269

    Article  Google Scholar 

  • Bouhlel S, Leach DL, Johnson CA, Marsh E, Salmi-Laouar S, Banks DA (2016) A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study. Mineral Deposita 51:1–32

    Article  Google Scholar 

  • Buchachenko AL (2001) Magnetic isotope effect: nuclear spin control of chemical reactions. J Phys Chem A 105:9995–10011

    Article  Google Scholar 

  • Chen J, Hintelmann H, Feng X, Dimock B (2012) Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim Cosmochim Acta 90:33–46

    Article  Google Scholar 

  • Chi Q (2004) Abundance of mercury in crust, rocks and loose sediment. Geochimica 33:641–648 (in Chinese with English abstract)

    Google Scholar 

  • Das R, Salters VJ, Odom AL (2009) A case for in vivo mass-independent fractionation of mercury isotopes in fish. Geochem Geophy Geosy 10:1–12

    Article  Google Scholar 

  • Deloule E, Allegre CJ, Doe BR (1986) Lead and sulfur isotope microstratigraphy in galena crystals from Mississippi Valley-type deposits. Econ Geol 81:1307–1321

    Article  Google Scholar 

  • Du D, Luo J, Li X (1997) Sedimentary evolution and palaeogeography of the Qamdo Block in **zang. Sediment Facies Palaeogeogr 17:1–17 (in Chinese with English abstract)

    Google Scholar 

  • Estrade N, Carignan J, Sonke JE, Donard OFX (2009) Mercury isotope fractionation during liquid–vapor evaporation experiments. Geochim Cosmochim Acta 73:2693–2711

    Article  Google Scholar 

  • Estrade N, Carignan J, Donard OF (2010) Isotope tracing of atmospheric mercury sources in an urban area of northeastern France. Environ Sci Technol 44:6062–6067

    Article  Google Scholar 

  • Feng D (2006) Evaluation report on Lanuoma lead-zinc polymetallic deposit, Changdu basin, Tibet. Institute of Geological Survey of Tibet Autonomous Region (in Chinese)

  • Feng X, Foucher D, Hintelmann H, Yan H, He T, Qiu G (2010) Tracing mercury contamination sources in sediments using mercury isotope compositions. Environ Sci Technol 44:3363–3368

    Article  Google Scholar 

  • Foucher D, Ogrinc N, Hintelmann H (2009) Tracing mercury contamination from the Idrija mining region (Slovenia) to the Gulf of Trieste using Hg isotope ratio measurements. Environ Sci Technol 43:33–39

    Article  Google Scholar 

  • Gantner N, Hintelmann H, Zheng W, Muir DC (2009) Variations in stable isotope fractionation of Hg in food webs of Arctic lakes. Environ Sci Technol 43:9148–9154

    Article  Google Scholar 

  • Ghosh S, Schauble EA, Couloume GL, Blum JD, Bergquist BA (2013) Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid–vapor evaporation experiments. Chem Geol 336:5–12

    Article  Google Scholar 

  • Goldhaber MB, Church SE, Doe BR, Aleinikoff JN, Brannon JC, Podosek FA, Mosier EL, Taylor CD, Gent CA (1995) Lead and sulfur isotope investigation of Paleozoic sedimentary rocks from the southern midcontinent of the United States; implications for paleohydrology and ore genesis of the Southeast Missouri lead belts. Econ Geol 90:1875–1910

    Article  Google Scholar 

  • Grammatikopoulos TA, Valeyev O, Roth T (2006) Compositional variation in Hg-bearing sphalerite from the polymetallic Eskay Creek deposit. British Columbia, Canada Chem Erde-Geochem 66:307–314

    Article  Google Scholar 

  • Gratz LE, Keeler GJ, Blum JD, Sherman LS (2010) Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. Environ Sci Technol 44:7764–7770

    Article  Google Scholar 

  • He L, Song Y, Chen K, Hou Z, Yu F, Yang Z, Wei J (2009) Thrust-controlled, sediment-hosted, Himalayan Zn–Pb–Cu–Ag deposits in the Lan** foreland fold belt, eastern margin of Tibetan Plateau. Ore Geol Rev 36:106–132

    Article  Google Scholar 

  • Hintelmann H, Lu S (2003) High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry. Analyst 128:635–639

    Article  Google Scholar 

  • Hintelmann H, Zheng W (2012) Tracking geochemical transformations and transport of mercury through isotope fractionation. In: Liu G, Cai Y, O’driscoll N (eds) Environmental chemistry and toxicology of mercury. Wiley, New York, pp 293–327

    Google Scholar 

  • Hou Z, Cook NJ (2009) Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geol Rev 36:2–24

    Article  Google Scholar 

  • Hou Z, Zaw K, Pan G, Mo X, Xu Q, Hu Y, Li X (2007) Sanjiang Tethyan metallogenesis in SW China: tectonic setting, metallogenic epochs and deposit types. Ore Geol Rev 31:48–87

    Article  Google Scholar 

  • Hou Z, Song Y, Zheng L, Wang Z, Yang Z, Yang Z (2008) Thrust-controlled, sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northern margins of Tibetan orogenic belt, geological features and tectonic model. Miner Depos 27:123–144 (in Chinese with English abstract)

    Google Scholar 

  • Jiskra M, Wiederhold JG, Skyllberg U, Kronberg RM, Hajdas I, Kretzschmar R (2015) Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures. Environ Sci Technol 49:7188–7196

    Article  Google Scholar 

  • Kesler SE, Cumming GL, Krstic D, Appold MS (1994) Lead isotope geochemistry of Mississippi Valley-type deposits of the southern Appalachians. Econ Geol 89:307–321

    Article  Google Scholar 

  • Krahn L, Baumann A (1996) Lead isotope systematics of epigenetic lead-zinc mineralization in the western part of the Rheinisches Schiefergebirge, Germany. Mineral Deposita 31:225–237

    Article  Google Scholar 

  • Leach DL, Sangste DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead-zinc deposits, a global perspective. Econ Geol 100:561–607

    Google Scholar 

  • Leach DL, Bradley DC, Huston D, Pisarevsky SA, Taylor RD, Gardoll SJ (2010) Sediment-hosted lead-zinc deposits in Earth history. Econ Geol 105:593–625

    Article  Google Scholar 

  • Li Z, Feng X, He T (2005) Determination of total mercury in soil and sediment by aquaregia digestion in the water bath coupled with cold vapor atom fluorescence spectrometry. Bull China Soc Miner Petrol Geochem 24:140–143 (in Chinese with English abstract)

    Google Scholar 

  • Li C, **e Y, Dong Y, Jiang G (2009) Discussion on the age of Jitang Group around Leiwuqi area, eastern Tibet, China and primary understanding. Geol Bull China 28:1178–1180 (in Chinese with English abstract)

    Google Scholar 

  • Moroskat M, Gleeson SA, Sharp RJ, Simonetti A, Gallagher CJ (2015) The geology of the carbonate-hosted Blende Ag–Pb–Zn deposit, Wernecke Mountains, Yukon, Canada. Mineral Deposita 50:83–104

    Article  Google Scholar 

  • Peng Y, Wang M, Chen M (2000) The Qamdo-Riwoqe Triassic cratonic basin in eastern **zang, sequence stratigraphy and correlation. Sediment Geol Tethyan Geol 20:62–67 (in Chinese with English abstract)

    Google Scholar 

  • Pribil MJ, Gray J, Van Metre P, Borrok D, Thapalia A (2010) Tracing anthropogenic contamination in a lake sediment core using Hg, Pb, and Zn isotopic compositions. 2010 GSA Denver Annual Meeting

  • Radosavljević SA, Stojanović JN, Pačevski AM (2012) Hg-bearing sphalerite from the Rujevac polymetallic ore deposit, Podrinje Metallogenic District, Serbia: compositional variations and zoning. Chem Erde-Geochem 72:237–244

    Article  Google Scholar 

  • Rytuba JJ (2003) Mercury from mineral deposits and potential environmental impact. Environ Geol 43:326–338

    Google Scholar 

  • Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189

    Article  Google Scholar 

  • Schwartz MO (1997) Mercury in zinc deposits: economic geology of a polluting element. Int Geol Rev 39:905–992

    Article  Google Scholar 

  • Sherlock RL, Tosdal RM, Lehrman NJ, Graney JR, Losh S, Jowett EC, Kesler SE (1995) Origin of the McLaughlin Mine sheeted vein complex; metal zoning, fluid inclusion, and isotopic evidence. Econ Geol 90:2156–2181

    Article  Google Scholar 

  • Sherman LS, Blum JD, Nordstrom DK, McCleskey RB, Barkay T, Vetriani C (2009) Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift. Earth Planet Sci Lett 279:86–96

    Article  Google Scholar 

  • Singer DA (1995) World class base and precious metal deposits—a quantitative analysis. Econ Geol 90:88–104

    Article  Google Scholar 

  • Smith CN (2010) Isotope geochemistry of mercury in active and fossil hydrothermal systems. Dissertation, University of Michigan

  • Smith CN, Kesler SE, Klaue B, Blum JD (2005) Mercury isotope fractionation in fossil hydrothermal systems. Geology 33:825–828

    Article  Google Scholar 

  • Smith CN, Kesler SE, Blum JD, Rytuba JJ (2008) Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA. Earth Planet Sci Lett 269:399–407

    Article  Google Scholar 

  • Song Y, Hou Z, Yang T, Zhang H, Yang Z, Tian S, Liu Y, Wang X, Liu Y, Xue C (2011) Sediment-hosted Himalayan base metal deposits in Sanjiang region, characteristics and genetic types. Acta Petrol Mineral 30:355–380 (in Chinese with English abstract)

    Google Scholar 

  • Sonke JE (2011) A global model of mass independent mercury stable isotope fractionation. Geochim Cosmochim Acta 75:4577–4590

    Article  Google Scholar 

  • Sonke JE, Schäfer J, Chmeleff J, Audry S, Blanc G, Dupré B (2010) Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chem Geol 279:90–100

    Article  Google Scholar 

  • Spurlin MS, Yin A, Horton BK, Zhou J, Wang J (2005) Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. Geol Soc Am Bull 117:1293–1317

    Article  Google Scholar 

  • Tang J, Zhong K, Liu Z, Li Z, Dong S (2006) Intracontinent orogen and metallogenesis in Himalayan epoch, Changdu large composite basin, Eastern Tibet. Acta Geol Sin 80:1364–1376 (in Chinese with English abstract)

    Google Scholar 

  • Tang Y, Bi X, Yin R, Feng X, Hu R (2017) Concentrations and isotopic variability of mercury in sulfide minerals from the **ding Zn-Pb deposit, Southwest China. Ore Geol Rev. doi:10.1016/j.oregeorev.2016.12.009

  • Tao Y (2012) Ore forming processes of Zn-Pb-Cu-Ag deposits in the Changdu Basin: mechanisms of elemental paragenesis, separation and super enrichment. Annual Report of National Basic Research Program (2009CB421005), Guiyang (in Chinese)

    Google Scholar 

  • Tao Y, Bi X, **n Z, Zhu F, Liao M, Li Y (2011) Geology, geochemistry and origin of Lanuoma Pb–Zn–Sn deposit in Changdu area, Tibet. Miner Depos 30:599–615 (in Chinese with English abstract)

    Google Scholar 

  • Wilkinson JJ, Eyre SL, Boyce AJ (2005) Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen mine. Econ Geol 100:63–86

    Article  Google Scholar 

  • Yin R, Feng X, Shi W (2010) Application of the stable-isotope system to the study of sources and fate of Hg in the environment, a review. Appl Geochem 25:1467–1477

    Article  Google Scholar 

  • Yin R, Feng X, Wang J, Li P, Liu J, Zhang Y, Chen J, Zheng L, Hu T (2013) Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China. Chem Geol 336:72–79

    Article  Google Scholar 

  • Yin R, Feng X, Chen J (2014) Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications. Environ Sci Technol 48:5565–5574

    Article  Google Scholar 

  • Yin R, Feng X, Hurley JP, Krabbenhoft DP, Lepak RF, Hu R, Zhang Q, Li Z, Bi X (2016) Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites. Sci Rep 6:18686. doi:10.1038/srep18686

    Article  Google Scholar 

  • York D (1968) Least squares fitting of a straight line with correlated errors. Earth Planet Sci Lett 5:320–324

    Article  Google Scholar 

  • Zhang H, Yin R, Feng X, Sommar J, Anderson CWN, Sapkota A, Fu X, Larssen T (2013) Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Sci Rep 3:3322. doi:10.1038/srep03322

    Article  Google Scholar 

  • Zheng W, Hintelmann H (2009) Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio. Geochim Cosmochim Acta 73:6704–6715

    Article  Google Scholar 

  • Zheng W, Hintelmann H (2010) Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light. J Phys Chem A 114:4238–4245

    Article  Google Scholar 

  • Zheng W, Foucher D, Hintelmann H (2007) Mercury isotope fractionation during volatilization of Hg(0) from solution into the gas phase. J Anal Atom Spectrom 22:1097–1104

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Basic Research Program of China (973 Program) (2015CB452603, 2009CB421005) and National Natural Science Foundation of China (41303014). We thank Dr. Zhonggen Li and Dr. Buyun Du for hel** with THg concentration analysis. Also, Dr. Neng** Shen and Dr. Jiehua Yang are acknowledged for their aid with field sampling. We acknowledge the USGS Wisconsin Mercury Research Lab and Wisconsin State Lab of Hygiene for the use of their lab space and multicollector ICP-MS for the determination of stable Hg isotopes. Dr. Bernd Lehmann and several anonymous reviewers are thanked for their constructive comments that have largely improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiantang Peng.

Additional information

Editorial handling: S.-Y. Jiang

Electronic supplementary material

ESM 1

(DOCX 25 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Yin, R., Peng, J. et al. Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China. Miner Deposita 53, 339–352 (2018). https://doi.org/10.1007/s00126-017-0743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-017-0743-7

Keywords

Navigation