Log in

Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The Solanum tuberosum L. Phureja Group consists of potato landraces widely grown in the Andes from western Venezuela to central Bolivia, and forms an important breeding stock due to their excellent culinary properties and other traits for develo** modern varieties. They have been distinguished by short-day adaptation, diploid ploidy (2n = 2x = 24), and lack of tuber dormancy. This nuclear simple sequence repeat (nSSR or microsatellite) study complements a prior random amplified polymorphic DNA (RAPD) study to explore the use of these markers to form a core collection of cultivar groups of potatoes. Like this prior RAPD study, we analyzed 128 accessions of the Phureja Group using nuclear microsatellites (nSSR). Twenty-six of the 128 accessions were invariant for 22 nSSR markers assayed. The nSSR data uncovered 25 unexpected triploid and tetraploid accessions. Chromosome counts of the 102 accessions confirmed these nSSR results and highlighted seven more triploids or tetraploids. Thus, these nSSR markers (except 1) are good indicators of ploidy for diploid potatoes in 92% of the cases. The nSSR and RAPD results: (1) were highly discordant for the remaining 70 accessions that were diploid and variable in nSSR, (2) show the utility of nSSRs to effectively uncover many ploidy variants in cultivated potato, (3) support the use of a cultivar-group (rather than a species) classification of cultivated potato, (4) fail to support a relationship between genetic distance and geographic distance, (5) question the use of any single type of molecular marker to construct core collections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Basigalup DH, Barnes DK, Stucker RE (1995) Development of a core collection for perennial Medicago plant introductions. Crop Sci 35:1163–1168

    Article  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Google Scholar 

  • Brown AHD, Clegg MT (1983) Isozyme assessment of plant genetic resources. In: Rattazzi MC, Scandalios JG, Whitt GS (eds) Isozymes: current topics in biological and medical research, vol 11. Alan R. Liss, New York, NY, pp 285–295

  • Brus SB, Carney HJ, Huamán Z (1981) Dynamics of Andean potato agriculture. Econ Bot 35:70–88

    Google Scholar 

  • Chalmers KJ, Waugh R, Sprent JI, Simmons AJ, Powell W (1992) Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity 69:465–472

    PubMed  Google Scholar 

  • Chapman CGD (1989) Collection strategies for the wild relatives of field crops. In: Brown ADH, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, UK, pp 263–279

    Google Scholar 

  • Crawford DJ (1990) Plant molecular systematics: macromolecular approaches. Wiley, New York

  • del Rio AH, Bamberg JB (2002) Lack of association between genetic and geographical origin characteristics for the wild potato Solanum sucrense. Am J Potato Res 79:335–338

    Article  Google Scholar 

  • del Rio AH, Bamberg JB, Huamán Z, Salas A, Vega SE (2001) Association of ecogeographical variables and RAPD marker variation. Wild potato populations of the USA. Crop Sci 41:870–878

    Google Scholar 

  • Delsney M, Grellet F, Tremousaygue D, Raynal M, Panabieres F (1988) Structure, evolution et expression de l’DNA nucleaire. Bull Soc Bot Fr 135:23–38

    Google Scholar 

  • Diwan N, Bauchan GR, McIntosh MS (1994) A core collection for the United States annual Medicago germplasm collection. Crop Sci 34:279–285

    Article  Google Scholar 

  • Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447

    Article  CAS  Google Scholar 

  • Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber WK, Llimensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, UK, pp 161–170

    Google Scholar 

  • Frankel OH, Brown AHD (1984) Current plant genetic resources—a critical appraisal. In: Chopra VL, Joshi BC, Sharma RP, Basnal HC (eds) Genetics: new frontiers. In: Proceeding of the fifth International Congress General, vol 4. Oxford and IBH Publishing Co., New Delhi, India, pp3–13

  • Gallois A, Audran JC, Burus M (1998) Assessment of genetic relationships and population discrimination among Fagus sylvatica L. by RAPD. Theor Appl Genet 97:211–219

    Article  Google Scholar 

  • Gepts P (1993) The use of molecular and biochemical markers in crop evolution studies. Evol Biol 27:51–94

    Google Scholar 

  • Gepts P (1995) Genetic markers and core collections. In: Hodgkin T, Brown AHD, van Hintum TJL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, Chichester, UK, pp127–146

  • Ghislain M, Zhang D, Fajardo D, Huamán Z, Hijmans R (1999) Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet Res Crop Evol 46:547–555

    Article  Google Scholar 

  • Ghislain M, Zhang D, Herrera-Montoya M (eds) (1997) Molecular biology laboratory protocols: Plant genoty**. Genetic resources department training manual. CIP, Lima, Peru

  • Ghislain M, Spooner DM, Rodríguez F, Villamón F, Núñez J, Vásquez C, Waugh R, Bonierbale M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genoty** of cultivated potato. Theor Appl Genet 108:881–890

    Article  PubMed  CAS  Google Scholar 

  • Grauke LJ, Thompson TE (1995) Evaluation of pecan [C. illinoinensis (Wangenh.) K. Koch] germplasm collection designation of a core subset. HortScience 30:950–954

    Google Scholar 

  • Grenier C, Bramel-Cox PJ, Hamon P (2001) Core collection of sorghum. I. Stratification based on geographical data. Crop Sci 41:234–240

    Article  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London

    Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Pl Genet Res Newsl 127:15–19

    Google Scholar 

  • Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the US germplasm collection of pea. Crop Sci 33:859–861

    Article  Google Scholar 

  • Huamán Z, Ortiz R, Gómez R (2000) Selecting a Solanum tuberosum subsp. andigena core collection using morphological, geographical, disease and pest descriptors. Am J Potato Res 77:183–190

    Google Scholar 

  • Huamán Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Bot 89:947–965

    Article  Google Scholar 

  • Johns T, Huamán Z, Ochoa CM, Schmiediche PE (1987) Relationships among wild, weed, and cultivated potatoes in the Solanum ajanhuiri complex. Syst Bot 12:541–552

    Article  Google Scholar 

  • Lamboy WF, Yu J, Forsline PL, Weeden NF (1996) Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. J Am Soc Hort Sci 121:982–987

    Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites with genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  PubMed  CAS  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Marshall DR, Brown ADH (1975) Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, UK, pp 53–80

    Google Scholar 

  • McGregor CE, van Treuren R, Hoekstra R, van Hintum TJL (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet 104:146–156

    Article  PubMed  CAS  Google Scholar 

  • Messmer MM, Melchinger AE, Woodman WL, Lee EA, Lamkey KR (1991) Genetic diversity among progenitors and elite lines from the Iowa Stiff Stalk Synthetic (BSSS) maize populations: comparison of allozyme and RFLP data. Theor Appl Genet 83:97–107

    Article  Google Scholar 

  • Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136

    Article  CAS  Google Scholar 

  • Milbourne D, Meyer RC, Collins AJ, Ramsay LD, Gebhardt C, Waugh R (1998) Isolation, characterization and map** of simple sequence repeat loci in potato. Mol Gen Genet 259:233–245

    Article  PubMed  CAS  Google Scholar 

  • Moser H, Lee M (1994) RFLP variation and genealogical distance, multivariate distance, heterosis, and genetic variation in oats. Theor Appl Genet 87:947–956

    Article  CAS  Google Scholar 

  • Ochoa CM (1958) Expedición colectora de papas cultivadas a la cuenca del Lago Titicaca. I. Determinación sistemática y número cromosómico del material colectado. Programa Cooperativo de Experimentación Agropecuaria (PCEA), Ministerio de Agricultura, Lima, Perú

  • Ochoa CM (1990) The potatoes of South America: Bolivia, Cambridge University Press, Cambridge, UK

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalsky A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Provan J, Powell W, Waugh R (1996) Microsatellite analysis of relationships within cultivated potato (Solanum tuberosum). Theor Appl Genet 92:1078–1084

    Article  CAS  Google Scholar 

  • Rohlf FJ (1993) NTSYS-pc, Numerical taxonomy and multivariate system. Exeter Publishing, Ltd., New York, NY, USA

  • Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722

    Article  CAS  Google Scholar 

  • Skroch P, Nienhuis J, Beebe S, Tohme J, Pedraza F (1998) Comparison of Mexican common bean (Phaseolus vulgaris L.) core and reserve collections. Crop Sci 38:488–496

    Article  Google Scholar 

  • Smith BW (1974) Cytological evidence. In: Radford AE, Dickison WC, Massey JR, Bell CR (eds) Vascular plant systematics. Harper and Row, New York, pp237–258

  • Smith JSC, Chin ECL, Shu L, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Smith OS, Smith JSC, Bowen SL, Tenborg RA (1992) Numbers of RFLP probes necessary to show associations between lines. Maize Genet Coop News Lett 66:66

    Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005a) A single domestication for potato based on multilocus AFLP genoty**. Proc Natl Acad Sci USA 120:14694–14699

    Article  CAS  Google Scholar 

  • Spooner DM, Tivang J, Nienhuis J, Miller JT, Douches DS, Contreras-MA (1995) Comparison of four molecular markers in measuring relationships among the wild potato relatives Solanum section Etuberosum (subgenus Potatoe). Theor Appl Genet 92:532–540

    Article  Google Scholar 

  • Spooner DM, van Treuren RR, de Vicente MC (2005b) Molecular markers for germplasm and genebank management. Tech Bull 10. International Plant Genetic Resources Institute, Rome, Italy, pp1–136

  • Sun GL, Diaz O, Salomon B, von Bothmer R (1999) Genetic diversity in Elymus caninus as revealed by isozyme, RAPD, and microsatellite markers. Genome 42:420–431

    Article  PubMed  CAS  Google Scholar 

  • Sun GL, Salomon B, von Bothmer R (1997) Analysis of tetraploid Elymus species using wheat microsatellites markers and RAPD markers. Genome 40:806–814

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP map** in plant breeding: new tools for an old science. Biotechnology 7:257–260

    Article  CAS  Google Scholar 

  • Tautz D, Rentz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    PubMed  CAS  Google Scholar 

  • Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656

    Article  PubMed  CAS  Google Scholar 

  • Tinker NA, Fortin MG, Mather DE (1993) Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor Appl Genet 85:976–984

    Article  CAS  Google Scholar 

  • Van Hintum TJL, Haalman D (1994) Pedigree analysis for composing a core collection of modern cultivars, with examples from barley (Hordeum vulgare s. lat.). Theor Appl Genet 88:70–74

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Watanabe K, Peloquin SJ (1989) Occurrence of 2n pollen and ps gene frequencies in cultivated groups and their related wild species in the tuber-bearing Solanums. Theor Appl Genet 78:329–336

    Article  Google Scholar 

  • Watanabe K, Peloquin SJ (1991) The occurrence and frequency of 2n pollen in 2x, 4x, and 6x wild, tuber-bearing Solanum species from Mexico, and Central and South America. Theor Appl Genet 82:621–626

    Article  Google Scholar 

  • Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic Publishers, Boston, pp 265–296

    Google Scholar 

  • Wieczorek J, Guo Q, Hijmans RJ (2004) The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Inter J Geogr Inform Sci 18:745–767

    Article  Google Scholar 

  • Williams J, Kubelik A, Livak K, Rafalski JA, Tingey S (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    PubMed  CAS  Google Scholar 

  • Yap I, Nelson RJ (1996) WinBoot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI discussion paper series No. 14, International Rice Research Institute, Manila, Philippines

  • Zimmerer K (1991) The regional biogeography of native potato cultivars in highland Peru. J Biogeogr 18:165–178

    Article  Google Scholar 

Download references

Acknowledgments

We thank Rene Gomez for providing the plant material and associated information used in the present study and Jorge Núñez for his valuable help on SSR data management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghislain.

Additional information

Communicated by F. J. Muehlbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghislain, M., Andrade, D., Rodríguez, F. et al. Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theor Appl Genet 113, 1515–1527 (2006). https://doi.org/10.1007/s00122-006-0399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0399-7

Keywords

Navigation