Log in

Development and map** of a codominant SCAR marker linked to the andromonoecious gene of melon

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Monoecy is an important goal for melon breeding because of the agronomic advantages it provides to parental lines in that they do not require hand emasculation to develop monoecious F1 hybrids, the latter producing fruits of higher quality. Monoecious phenotype is conferred by the dominant allele of the andromonoecious (a) gene, whereas recessive homozygous plants are andromonoecious. A bulked segregant analysis (BSA) approach performed in a set of 38 double-haploid lines has allowed us to identify an AFLP marker linked to the a gene at 3.3 cM. Following cloning and sequencing of the AFLP fragment, specific PCR primers were designed and used in the amplification of a codominant SCAR marker. Using a backcrossed map** population of 530 plants, the SCAR marker could be mapped near the a locus (5.5 cM). Size difference between the two allelic SCAR fragments is 42 bp and might be due to a deletion/insertion. The SCAR marker is closest to the a gene identified to date, and can be useful in breeding programs, using marker-assisted selection procedures to screen for sexual types in melon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth C (2000) Boys and girls come out to play: the molecular biology of dioecious plants. Ann Bot 86:211–221

    Article  Google Scholar 

  • Allard W (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278

    Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251:1030–1033

    Google Scholar 

  • Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arús P, de Vicente CM, Katzir N (2000) Simple sequence repeats in Cucumis map** and map merging. Genome 43:963–974

    Article  CAS  PubMed  Google Scholar 

  • Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384

    Article  CAS  Google Scholar 

  • Deputy JC, Ming R, Ma H, Liu Z, Fitch MMM, Wang M, Manshardt R, Stiles JI (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111

    Google Scholar 

  • Filatov DA, Monéger F, Negrutiu I, Charlesworth D (2000) Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature 404:388–390

    Article  CAS  PubMed  Google Scholar 

  • Grant SR (1999) Genetics of gender dimorphism in higher plants. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin Heidelberg New York, pp 247–274

    Google Scholar 

  • Hormaza JI, Dollo L Polito VS (1994) Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor Appl Genet 89:9–13

    Article  Google Scholar 

  • Kahana A, Silberstein L, Kessler N, Goldstein RS, Perl-Treves R (1999) Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Mol Biol 41:517–528

    Article  Google Scholar 

  • Kenigsbuch D, Cohen Y (1990) The inheritance of gynoecy in muskmelon. Genome 33:317–320

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  Google Scholar 

  • Lotfi M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21:1121–1128

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli V (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  PubMed  Google Scholar 

  • Neuhausen SL (1992) Evaluation of restriction fragment length polymorphism in Cucumis melo. Theor Appl Genet 83:379–384

    Google Scholar 

  • Périn C, Hagen LS, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002a) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034

    Article  PubMed  Google Scholar 

  • Périn C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002b) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.) Mol Genet Genom 266:933–941

    Article  Google Scholar 

  • Polley A, Seigner E, Ganal MW (1997) Identification of sex in hop (Humulus lupulus) using molecular markers. Genome 40:357–361

    Google Scholar 

  • Poole CF, Grimball PC (1939) Inheritance of new sex forms in Cucumis melo L. J Hered 30:21

    Google Scholar 

  • Qu LJ, Foote TN, Roberts MA, Money TA, Aragón-Alcaide L, Snape JW, Moore G (1998) A simple PCR-bases method for scoring the ph1b deletion in wheat. Theor Appl Genet 96:371–375

    Article  Google Scholar 

  • Reamon-Bütter SM, Jung C (2000) AFLP-derived STS markers for the identification of sex in Asparagus officinalis L. Theor Appl Genet 100:432–438

    Article  Google Scholar 

  • Reamon-Bütter SM, Schondelmaier J, Jung C (1998) AFLP markers tightly linked to the sex locus in Asparagus officinalis L. Mol Breed 4:91–98

    Article  Google Scholar 

  • Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International, New York

    Google Scholar 

  • Rosa JT (1928) The inheritance of flower types in Cucumis and Cytrullus. Hilgardia 3:233–250

    Google Scholar 

  • Shattuck-Eidens DS, Bell RN, Neuhausen SL, Helentjaris T (1990) DNA sequence variation within maize and melon: observations from PCR amplification and direct sequencing. Genetics 126:207–217

    Google Scholar 

  • Silberstein L, Kovalski I, Brotman Y, Périn C, Dogimont C, Pitrat M, Klingler J, Thompson G, Portnoy V, Katzir N, Perl-Treves R (2003) Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 46:761–773

    Article  CAS  PubMed  Google Scholar 

  • Staub JE, Danin-Poleg Y, Fazio G, Horejsi T, Reis N, Katzir N (2000) Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica 111:225–241

    Article  Google Scholar 

  • Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217:313–332

    CAS  Google Scholar 

  • Trebitsh T, Staub JE, O’Neill S (1997) Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the Female (F) locus that enhances females sex expression in cucumber. Plant Physiol 113:987–995

    Article  CAS  PubMed  Google Scholar 

  • Urasaki N, Tukumoto M, Tarota K, Ban Y, Kayano T, Tanaka H, Oku H, Chinen I, Terauchi R (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285

    Article  Google Scholar 

  • Vos P, Hogers R, Bleekers M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet 9:217–281

    CAS  PubMed  Google Scholar 

  • Whitaker TW, Davis DW (1962) Cucurbits: botany, cultivation and utilization. Interscience, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lozano.

Additional information

Communicated by I. Paran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noguera, F., Capel, J., Alvarez, J. et al. Development and map** of a codominant SCAR marker linked to the andromonoecious gene of melon. Theor Appl Genet 110, 714–720 (2005). https://doi.org/10.1007/s00122-004-1897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1897-0

Keywords

Navigation