Log in

Idiopathischer Normaldruckhydrozephalus

Liquorflussmessung mittels Phasenkontrast-MRT und ihre diagnostische Bedeutung

Idiopathic normal-pressure hydrocephalus

Flow measurement of cerebrospinal fluid using phase contrast MRI and its diagnosic importance

  • Originalien
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Zielsetzung

Die Messung des Liquorflusses im Aquaeductus cerebri zur Diagnostizierung des idiopathischen Normaldruckhydrozephalus (iNPH) ist durch die Entwicklung nichtinvasiver Messmethoden mittels Magnetresonanztomographie (MRT) in den Mittelpunkt des Interesses gerückt. Ziel unserer Arbeit ist es, herauszufinden, ob dieses diagnostische Verfahren die bisher unvermeidbaren invasiven Methoden in der Diagnostik des iNPH ersetzen kann.

Methoden

Zwischen Januar 2003 und April 2005 untersuchten wir 61 Patienten, die unter den klinischen Symptomen der Hakim-Trias litten und eine Erweiterung des Ventrikelsystems zeigten mittels lumbalem Infusionstest, Zerebrospinal-Tap-Test und einer Liquorflussmessung mit einer kardial getriggerten 2D-Phasenkontrast-Sequenz. Die anschließend mit einem ventrikuloperitonealen Shunt therapierten Patienten wurden nach 12 Monaten nachuntersucht. Die Dokumentation der Symptomatik erfolgte anhand des Kiefer-Scores; das Outcome der Patienten wurde mit der NPH-Recovery-Rate nach Meier gemessen.

Ergebnisse

Entsprechend des Studienprotokolls diagnostizierten wir bei 41 Patienten einen iNPH und bei 20 Patienten eine Hirnatrophie. 39 der 41 iNPH-Patienten therapierten wir mittels Implantation eines ventrikuloperitonealen Shunts, 2 Patienten lehnten eine Operation ab. Im Anschluss an den Eingriff ergab sich eine signifikante Besserung der mit dem Kiefer-Score gemessenen klinischen Symptomatik. In der anschließenden Analyse der MR-Messdaten, gewonnen mittels quantitativer 2D-Phasenkontrast-Technik konnte nachgewiesen werden, dass eine Liquorflussrate von mehr als 24,5 ml/min mit einer Spezifität von 95% mit einem iNPH korreliert ist.

Schlussfolgerungen

Die Messung des Liquorflusses mittels Phasenkontrasttechnik eignet sich als hochselektive nichtinvasive Voruntersuchung in der Diagnostik des iNPH.

Summary

Aim

The measurement of CSF flow in the aqueduct has been a focus of interest since the development of MR imaging (MRI) techniques for this purpose in diagnosing idiopathic normal-pressure hydrocephalus (iNPH). The purpose of this prospective study was to determine the ability of this diagnostic tool to replace invasive methods in establishing the diagnosis of iNPH.

Patients and Methods

Between January 2003 and April 2005, 61 patients with the Hakim triad of clinical symptoms and dilated ventricular systems underwent the intrathecal infusion test, cerebrospinal tap test, and phase-contrast MRI to measure CSF flow rate in the aqueduct. Shunted patients were controlled 12 months postperatively. Pre- and postoperative clinical symptoms were evaluated with the Kiefer score. Outcome was calculated according to the NPH recovery rate.

Results

According to these criteria the patients were classified into groups of 41 with iNPH and 20 with brain atrophy. Of the iNPH patients, 39 were shunted and two did not agree to surgery. The mean Kiefer score of the shunted patients was statistically significantly lower after surgery. The aqueductal CSF flow rate of these patients was statistically analyzed and showed that a flow rate of more than 24.5 ml/min is 95% specific to iNPH.

Conclusion

Measurement of the CSF flow rate in the aqueduct using phase-contrast MRI is a highly specific preselective method for diagnosing iNPH

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Adams RD, Fisher CM, Hakim S et al. (1965) Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure. A treatable syndrom. N Engl J Med 273: 117–26

    PubMed  Google Scholar 

  2. Bateman GA (2002) Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukaraiosis and normal-pressure hydrocephalus. Neuroradiology 44: 740–748

    Article  PubMed  Google Scholar 

  3. Boon AJ, Tans JT, Delwel EJ et al. (1998) Does CSF outflow resistance predict the response to shunting in patients with normal pressure hydrocephalus? Acta Neurochir [Suppl 71]: 331–3

  4. Borgesen SE (1984) Conductance to outflow of CSF in normal pressure hydrocephalus. Acta Neurochir (Wien) 71: 1–45

    Google Scholar 

  5. Bradley WGJ, Scalzo D, Queralt J et al. (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198: 523–9

    PubMed  Google Scholar 

  6. Brant-Zawadzki M, Kelly W, Kjos B et al. (1985) Magnetic resonance imaging and characterization of normal and abnormal intracranial cerebrospinal fluid (CSF) spaces. Neuroradiology 27: 3–8

    Article  PubMed  Google Scholar 

  7. Conner ES, Foley L, Black PM (1984) Experimental normal-pressure hydrocephalus is accompanied by increased transmantle pressure. J Neurosurg 61: 322–7

    PubMed  Google Scholar 

  8. Evans WA (1943) An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Acta Neurochir (Wien) 931–937

  9. Fishmann RA (1966) Occult hydrocephalus. N Engl J Med 274: 466–167

    Google Scholar 

  10. Gideon P, Stahlberg F, Thomsen C et al. (1994) Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology 36: 210–5

    Article  PubMed  Google Scholar 

  11. Greitz D (2005) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27: 145–65

    Google Scholar 

  12. Hoff J BR (1991) Transcerebral mantle pressure hydrocephalus. Acta Neurol Scand 84: 475–482

    PubMed  Google Scholar 

  13. Holland GN, Hawkes RC, Moore WS (1980) Nuclear magnetic resonance (NMR) tomography of the brain: coronal and sagittal sections. J Comput Assist Tomogr 4: 429–33

    PubMed  Google Scholar 

  14. Hussey F, Schanzer B, Katzman R (1970) A simple constant-infusion manometric test for measurement of CSF absorption. Neurology 20: 665–80

    PubMed  Google Scholar 

  15. Katzman R, Hussey F (1970) A simple constant-infusion manometric test for measurement of CSF absorption. Neurology 20: 534–44

    PubMed  Google Scholar 

  16. Kiefer M, Eymann R, Komeda Y, Steudel WI (2003) Ein Graduierungssystem für den chronischen Hydrozephalus. Zentralbl.Neurochir 64: 109–115

    Google Scholar 

  17. Krauss JK, Halve B (2004) Normal pressure hydrocephalus: survey on contemporary diagnostic algorithms and therapeutic decision-making in clinical practice. Acta Neurochir (Wien) 146: 379–88

    Google Scholar 

  18. Krauss JK, Regel JP, Vach W et al. (1997) Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting? Neurosurgery 40: 67–73

    Article  PubMed  Google Scholar 

  19. Künzel B; Klages G; Meier U (1987) Der intrathekale Infusionstest zur Untersuchung der kraniospinalen Liquordynamik. Ein neues Auswerteverfahren. Zentralbl Neurochir 48: 320–326

    PubMed  Google Scholar 

  20. Luetmer PH, Huston J, Friedman JA et al. (2002) Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 50: 534–43

    Article  PubMed  Google Scholar 

  21. Malm J, Kristensen B, Karlsson T et al. (1995) The predictive value of cerebrospinal fluid dynamic tests in patients with th idiopathic adult hydrocephalus syndrome. Arch Neurol 52: 783–9

    PubMed  Google Scholar 

  22. Marmarou A (1986) Progress in the analysis of intracranial pressure dynamics. Springer, Berlin

  23. Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43: 523–34

    PubMed  Google Scholar 

  24. Meier U, Kiefer M, Sprung C (2003) Normal-pressure hydrocephalus: Pathology, pathophysiology, diagnostics, therapeutics and clinical course. PVV science puplication, Ratingen

  25. Messert B, Baker NH (1966) Syndrome of progressive spastic ataxia and apraxia associated with occult hydrocephalus. Neurology 16: 440–52

    PubMed  Google Scholar 

  26. Nitz WR, Bradley WGJ, Watanabe AS et al. (1992) Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology 183: 395–405

    PubMed  Google Scholar 

  27. O‘Connell JEA (1943) Vascular factor in intracranial pressure and maintenance of cerebrospinla fluid circulation. Brain 66: 204–228

    Article  Google Scholar 

  28. Preston JE (2001) Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 52: 31–7

    Article  PubMed  Google Scholar 

  29. Riddoch G (1936) Progressive dementia without headaches or changes in the optic disks due to tumors of the third ventricle. Acta Neurochir (Wien) 59: 225–33

    Google Scholar 

  30. Sherman JL, Citrin CM (1986) Magnetic resonance demonstration of normal CSF flow. AJNR Am J Neuroradiol 7: 3–6

    PubMed  Google Scholar 

  31. Silverberg GD, Mayo M, Saul T et al. (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2: 506–11

    Article  PubMed  Google Scholar 

  32. Spraggins TA (1990) Wireless retrospective gating: application to cine cardiac imaging. Magn Reson Imaging 8: 675–81

    Article  PubMed  Google Scholar 

  33. Stephensen H, Tisell M, Wikkelso C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50: 763–71

    Article  PubMed  Google Scholar 

  34. Tans JT, Poortvliet DC (1984) Comparison of ventricular steady-state infusion with bolus infusion and pressure recording for differentiating between arrested and non-arrested hydrocephalus. Acta Neurochir (Wien) 72: 15–29

    Google Scholar 

  35. Wedeen VJ, Meuli RA, Edelman RR et al. (1985) Projective imaging of pulsatile flow with magnetic resonance. Science 230: 946–8

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist oder einer Firma, die ein Konkurrenzprodukt vertreibt, besteht. Die Präsentation des Inhaltes ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Zain, F., Rademacher, G., Lemcke, J. et al. Idiopathischer Normaldruckhydrozephalus. Nervenarzt 78, 181–187 (2007). https://doi.org/10.1007/s00115-006-2231-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-006-2231-7

Schlüsselwörter

Keywords

Navigation