Log in

„Ligament bracing“ – die augmentierte Kreuzbandnaht

Biomechanische Grundlagen für ein neues Behandlungskonzept

Ligament bracing – augmented cruciate ligament sutures

Biomechanical studies of a new treatment concept

  • Medizin aktuell/Technische Innovationen
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Im Rahmen der akuten Kniegelenkluxation führt die Naht von rupturierten Kreuzbändern in ca. 80 % der Fälle zu guten klinischen Ergebnissen. Nachteile sind die geringe Primärstabilität sowie die oft beobachtete sekundäre Elongation der genähten Bänder. In der vorliegenden experimentellen Studie wird die mechanische Stabilität verschiedener Augmente, welche die Kreuzbandnähte additiv verstärken, mit der Primärstabilität der Kreuzbandplastik verglichen.

Hypothese

Das Konzept „ligament bracing“ mit transossärer Kreuzbandnaht und unterstützender Fadenaugmentation ist biomechanisch der Kreuzbandrekonstruktion überlegen und bietet eine ausreichende Primärstabilität zum Schutz der Naht während der vulnerablen Nachbehandlungsphase.

Material und Methoden

Untersucht wurden 42 porkine Kniegelenke in sieben Gruppen. Die Stabilität von vier verschiedenen Naht-/Augmentatkonstrukten wurde der Stabilität der Kreuzbandrekonstruktion mittels humaner Hamstring-Sehne gegenüber gestellt. Die Testung erfolgte in 1000 Zyklen mit 20–154 N Belastung in a.-p.-Translation und 60° Flexion. Hierbei wurden die Elongation und die maximale Versagenslast gemessen und dokumentiert.

Ergebnisse

Weder die Kreuzbandrekonstruktion (3,13 ± 1,65 mm; 362 ± 51 N), noch die augmentierte Naht (1,89–2,5 mm; 464–624 N) erreichten die Primärstabilität des intakten Kreuzbandes (0,63 ± 0,34 mm; 1012 ± 91 N). Im Vergleich zur Kreuzbandrekonstruktion zeigten alle vier augmentierten Kreuzbandnähte eine geringere Elongation im zyklischen Test sowie eine höhere maximale Versagenslast. Die alleinige Naht erzielte unbefriedigende Ergebnisse (6,79 ± 4,86 mm; 177 ± 73 N).

Schlussfolgerung

Die augmentierte Kreuzbandnaht zeigt eine signifikant höhere Primärstabilität als die isolierte Naht der Kreuzbänder sowie die Kreuzbandplastik mit Hamstring-Sehnen und Bioschraubenfixation. Das Konzept des „ligament bracing“ soll bei der Versorgung akuter multiligamentärer Kniegelenkverletzungen zukünftig Anwendung finden. Die klinischen Ergebnisse sind abzuwarten.

Abstract

Background

In the context of acute knee dislocations, suture repair of ruptured cruciate ligaments leads to good clinical results in 80% of cases. Disadvantages are low primary stability and subsequently secondary elongation of the sutured ligaments. In the present study, we compared primary stability of suture repair, reinforced by different suture augments, to cruciate ligament reconstruction.

Objective

The concept of ligament bracing with transosseous suture repair of the cruciate ligaments and additional suture augmentation is biomechanically superior to cruciate ligament reconstruction.

Material and methods

A total of 42 porcine knee joints divided into seven groups were examined. The stability of four different suture/augmentation combinations were compared to cruciate ligament reconstruction with human hamstring tendons. The investigational setup consisted of testing 1000 cycles with 20 N to 154 N load in a.-p. translation and 60° flexion. Elongation and load to failure were measured.

Results

Neither reconstruction (3.13 ± 1.65 mm; 362 ± 51 N) nor augmented suture repair (1.89–2.5 mm; 464–624 N) achieved the primary stability of the intact cruciate ligament (0.63 ± 0.34 mm, 1012 ± 91 N). In comparison to ligament reconstruction, all four augmented suture repairs showed minor elongation in the cyclic test and a higher load to failure. The isolated suture repair showed poor results (6.79 ± 4.86 mm, 177 ± 73 N).

Conclusion

Augmented suture repair provides significantly higher stability compared with isolated suture repair and reconstruction with hamstring tendons. The concept of ligament bracing could be a promising future treatment option in acute knee dislocations. Clinical results remain to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Richter M, Lobenhoffer P, Tscherne H (1999) Knee dislocation. Long-term results after operative treatment. Chirurg 70:1294–1301

    Article  CAS  PubMed  Google Scholar 

  2. Almekinders LC, Dedmond BT (2000) Outcomes of the operatively treated knee dislocation. Clin Sports Med 19:503–518

    Article  CAS  PubMed  Google Scholar 

  3. Barnes CJ, Pietrobon R, Higgins LD (2002) Does the pulse examination in patients with traumatic knee dislocation predict a surgical arterial injury? A meta-analysis. J Trauma 53:1109–1114

    Article  PubMed  Google Scholar 

  4. Green NE, Allen BL (1977) Vascular injuries associated with dislocation of the knee. J Bone Joint Surg Am 59:236–239

    PubMed  Google Scholar 

  5. Kendall RW, Taylor DC, Salvian AJ, O’Brien PJ (1993) The role of arteriography in assessing vascular injuries associated with dislocations of the knee. J Trauma 35:875–878

    Article  CAS  PubMed  Google Scholar 

  6. Mariani PP, Santoriello P, Iannone S et al (1999) Comparison of surgical treatments for knee dislocation. Am J Knee Surg 12:214–221

    CAS  PubMed  Google Scholar 

  7. Owens BD, Neault M, Benson E, Busconi BD (2007) Primary repair of knee dislocations: results in 25 patients (28 knees) at a mean follow-up of four years. J Orthop Trauma 21:92–96

    Article  PubMed  Google Scholar 

  8. Roman PD, Hopson CN, Zenni EJ Jr (1987) Traumatic dislocation of the knee: a report of 30 cases and literature review. Orthop Rev 16:917–924

    CAS  PubMed  Google Scholar 

  9. Sisto DJ, Warren RF (1985) Complete knee dislocation. A follow-up study of operative treatment. Clin Orthop Relat Res 198:94–101

    PubMed  Google Scholar 

  10. Wright DG, Covey DC, Born CT, Sadasivan KK (1995) Open dislocation of the knee. J Orthop Trauma 9:135–140

    Article  CAS  PubMed  Google Scholar 

  11. Bin SI, Nam TS (2007) Surgical outcome of 2-stage management of multiple knee ligament injuries after knee dislocation. Arthroscopy 23:1066–1072

    Article  PubMed  Google Scholar 

  12. Yastrebov O, Lobenhoffer P (2009) Treatment of isolated and multiple ligament injuries of the knee: anatomy, biomechanics, diagnosis, indications for repair, surgery. Orthopade 38:563–580

    Article  CAS  PubMed  Google Scholar 

  13. Frosch KH, Preiss A, Heider S et al (2013) Primary ligament sutures as a treatment option of knee dislocations: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21:1502–1509

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kannus P, Jarvinen M (1990) Nonoperative treatment of acute knee ligament injuries. A review with special reference to indications and methods. Sports Med 9:244–260

    Article  CAS  PubMed  Google Scholar 

  15. Lobenhoffer P (2002) Complex instability of the anterior knee. Orthopade 31:770–777

    Article  CAS  PubMed  Google Scholar 

  16. Levy BA, Dajani KA, Whelan DB et al (2009) Decision making in the multiligament-injured knee: an evidence-based systematic review. Arthroscopy 25:430–438

    Article  PubMed  Google Scholar 

  17. Schenck R Jr (2003) Classification of knee dislocation. Oper Tech Sports Med 11:193–198

    Article  Google Scholar 

  18. Petri M, Ettinger M, Dratzidis A et al (2012) Comparison of three suture techniques and three suture materials on gap formation and failure load in ruptured tendons: a human cadaveric study. Arch Orthop Trauma Surg 132:649–654

    Article  CAS  PubMed  Google Scholar 

  19. Steadman JR, Cameron-Donaldson ML, Briggs KK, Rodkey WG (2006) A minimally invasive technique („healing response“) to treat proximal ACL injuries in skeletally immature athletes. J Knee Surg 19:8–13

    PubMed  Google Scholar 

  20. Steadman JR, Dragoo JL, Hines SL, Briggs KK (2008) Arthroscopic release for symptomatic scarring of the anterior interval of the knee. Am J Sports Med 36:1763–1769

    Article  PubMed  Google Scholar 

  21. Tapper JE, Funakoshi Y, Hariu M et al (2009) ACL/MCL transection affects knee ligament insertion distance of healing and intact ligaments during gait in the Ovine model. J Biomech 42:1825–1833

    Article  PubMed  Google Scholar 

  22. Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19:399–404

    Article  CAS  PubMed  Google Scholar 

  23. Dahlstedt L, Dalen N, Jonsson U (1990) Goretex prosthetic ligament vs. Kennedy ligament augmentation device in anterior cruciate ligament reconstruction. A prospective randomized 3-year follow-up of 41 cases. Acta Orthop Scand 61:217–224

    Article  CAS  PubMed  Google Scholar 

  24. Frank CB, Jackson DW (1997) The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 79:1556–1576

    CAS  PubMed  Google Scholar 

  25. Mascarenhas R, MacDonald PB (2008) Anterior cruciate ligament reconstruction: a look at prosthetics–past, present and possible future. Mcgill J Med 11:29–37

    PubMed Central  PubMed  Google Scholar 

  26. West RV, Harner CD (2005) Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 13:197–207

    PubMed  Google Scholar 

  27. Woods GA, Indelicato PA, Prevot TJ (1991) The Gore-Tex anterior cruciate ligament prosthesis. Two versus three year results. Am J Sports Med 19:48–55

    Article  CAS  PubMed  Google Scholar 

  28. Stannard JP, Brown SL, Farris RC et al (2005) The posterolateral corner of the knee: repair versus reconstruction. Am J Sports Med 33:881–888

    Article  PubMed  Google Scholar 

  29. Attmanspacher W, Dittrich V, Stedtfeld HW (2003) Results on treatment of anterior cruciate ligament rupture of immature and adolescents. Unfallchirurg 106:136–143

    Article  CAS  PubMed  Google Scholar 

  30. Engebretsen L, Svenningsen S, Benum P (1988) Poor results of anterior cruciate ligament repair in adolescence. Acta Orthop Scand 59:684–686

    Article  CAS  PubMed  Google Scholar 

  31. Frosch KH, Stengel D, Brodhun T et al (2010) Outcomes and risks of operative treatment of rupture of the anterior cruciate ligament in children and adolescents. Arthroscopy 26:1539–1550

    Article  PubMed  Google Scholar 

  32. Preiss A, Brodhun T, Stietencron I, Frosch KH (2012) Rupture of the anterior cruciate ligament in growing children: surgical or conservative treatment? A systematic review. Unfallchirurg 115:848–854

    Article  CAS  PubMed  Google Scholar 

  33. Kohl S, Evangelopoulos DS, Kohlhof H et al (2013) Anterior crucial ligament rupture: self-healing through dynamic intraligamentary stabilization technique. Knee Surg Sports Traumatol Arthrosc 21:599–605

    Article  PubMed  Google Scholar 

  34. Fisher MB, Jung HJ, McMahon PJ, Woo SL (2011) Suture augmentation following ACL injury to restore the function of the ACL, MCL, and medial meniscus in the goat stifle joint. J Biomech 44:1530–1535

    Article  PubMed  Google Scholar 

  35. Fleming BC, Carey JL, Spindler KP, Murray MM (2008) Can suture repair of ACL transection restore normal anteroposterior laxity of the knee? An ex vivo study. J Orthop Res 26:1500–1505

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ritchie JR, Parker RD (1996) Graft selection in anterior cruciate ligament revision surgery. Clin Orthop Relat Res 325:65–77

    Article  PubMed  Google Scholar 

  37. Weitzel PP, Richmond JC, Altman GH et al (2002) Future direction of the treatment of ACL ruptures. Orthop Clin North Am 33:653–661

    Article  PubMed  Google Scholar 

  38. Beynnon BD, Fleming BC, Johnson RJ et al (1995) Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 23:24–34

    Article  CAS  PubMed  Google Scholar 

  39. Brand J Jr, Weiler A, Caborn DN et al (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–774

    PubMed  Google Scholar 

  40. Engebretsen L, Lew WD, Lewis JL, Hunter RE (1989) Knee mechanics after repair of the anterior cruciate ligament. A cadaver study of ligament augmentation. Acta Orthop Scand 60:703–709

    Article  CAS  PubMed  Google Scholar 

  41. Holden JP, Grood ES, Korvick DL et al (1994) In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J Biomech 27:517–526

    Article  CAS  PubMed  Google Scholar 

  42. Morrison JB (1969) Function of the knee joint in various activities. Biomed Eng 4:573–580

    CAS  PubMed  Google Scholar 

  43. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3:51–61

    Article  CAS  PubMed  Google Scholar 

  44. Noyes FR, Butler DL, Grood ES et al (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    CAS  PubMed  Google Scholar 

  45. Woo SL, Hollis JM, Adams DJ et al (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  PubMed  Google Scholar 

  46. Beynnon BD, Amis AA (1998) In vitro testing protocols for the cruciate ligaments and ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):70–76

    Article  Google Scholar 

  47. Giurea M, Zorilla P, Amis AA, Aichroth P (1999) Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med 27:621–625

    CAS  PubMed  Google Scholar 

  48. Milano G, Mulas PD, Ziranu F et al (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 22:660–668

    Article  PubMed  Google Scholar 

  49. Gan AW, Neo PY, He M et al (2012) A biomechanical comparison of 3 loop suture materials in a 6-strand flexor tendon repair technique. J Hand Surg Am 37:1830–1834

    Article  PubMed  Google Scholar 

  50. Fuss FK (1991) Anatomy and function of the cruciate ligaments of the domestic pig (Sus scrofa domestica): a comparison with human cruciates. J Anat 178:11–20

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Paschal SO, Seemann MD, Ashman RB et al (1994) Interference fixation versus postfixation of bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction. A biomechanical comparative study in porcine knees. Clin Orthop Relat Res 300:281–287

    PubMed  Google Scholar 

  52. Xerogeanes JW, Fox RJ, Takeda Y et al (1998) A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann Biomed Eng 26:345–352

    Article  CAS  PubMed  Google Scholar 

  53. Adam F, Pape D, Schiel K et al (2004) Biomechanical properties of patellar and hamstring graft tibial fixation techniques in anterior cruciate ligament reconstruction: experimental study with roentgen stereometric analysis. Am J Sports Med 32:71–78

    Article  PubMed  Google Scholar 

  54. Black KP, Saunders MM, Stube KC et al (2000) Effects of interference fit screw length on tibial tunnel fixation for anterior cruciate ligament reconstruction. Am J Sports Med 28:846–849

    CAS  PubMed  Google Scholar 

  55. Butler JC, Branch TP, Hutton WC (1994) Optimal graft fixation–the effect of gap size and screw size on bone plug fixation in ACL reconstruction. Arthroscopy 10:524–529

    Article  CAS  PubMed  Google Scholar 

  56. Ishibashi Y, Rudy TW, Livesay GA et al (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 13:177–182

    Article  CAS  PubMed  Google Scholar 

  57. Kousa P, Jarvinen TL, Kannus P, Jarvinen M (2001) Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction. Biomechanical evaluation by single cycle and cyclic loading. Am J Sports Med 29:420–425

    CAS  PubMed  Google Scholar 

  58. Kousa P, Jarvinen TL, Vihavainen M et al (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31:182–188

    PubMed  Google Scholar 

  59. Nurmi JT, Jarvinen TL, Kannus P et al (2002) Compaction versus extraction drilling for fixation of the hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 30:167–173

    PubMed  Google Scholar 

  60. Brown CH Jr, Hecker AT, Hipp JA et al (1993) The biomechanics of interference screw fixation of patellar tendon anterior cruciate ligament grafts. Am J Sports Med 21:880–886

    Article  PubMed  Google Scholar 

  61. Linde F, Sorensen HC (1993) The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech 26:1249–1252

    Article  CAS  PubMed  Google Scholar 

  62. Liu SH, Kabo JM, Osti L (1995) Biomechanics of two types of bone-tendon-bone graft for ACL reconstruction. J Bone Joint Surg Br 77:232–235

    CAS  PubMed  Google Scholar 

  63. Pelker RR, Friedlaender GE, Markham TC et al (1984) Effects of freezing and freeze-drying on the biomechanical properties of rat bone. J Orthop Res 1:405–411

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Heitmann, A. Dratzidis, M. Jagodzinski, P. Wohlmuth, C. Hurschler, K. Püschel, A. Giannakos, A. Preiss und K.H. Frosch geben an, dass kein Interessenkonflikt besteht. Die Fadenmaterialien, Implantate und die Abb. 5. wurden von der Fa. Arthrex zur Verfügung gestellt. Eine finanzielle Unterstützung erfolgte nicht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-H. Frosch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heitmann, M., Dratzidis, A., Jagodzinski, M. et al. „Ligament bracing“ – die augmentierte Kreuzbandnaht. Unfallchirurg 117, 650–657 (2014). https://doi.org/10.1007/s00113-014-2563-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-014-2563-x

Schlüsselwörter

Keywords

Navigation