Log in

Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We hypothesised that a potentially disease-modifying osteoarthritis (OA) drug such as hyaluronic acid (HA) given in combination with anti-inflammatory signalling agents such as mitogen-activated protein kinase kinase–extracellular signal-regulated kinase (MEK-ERK) signalling inhibitor (U0126) could result in additive or synergistic effects on preventing the degeneration of articular cartilage. Chondrocyte differentiation and hypertrophy were evaluated using human OA primary cells treated with either HA or U0126, or the combination of HA + U0126. Cartilage degeneration in menisectomy (MSX) induced rat OA model was investigated by intra-articular delivery of either HA or U0126, or the combination of HA + U0126. Histology, immunostaining, RT-qPCR, Western blotting and zymography were performed to assess the expression of cartilage matrix proteins and hypertrophic markers. Phosphorylated ERK (pERK)1/2-positive chondrocytes were significantly higher in OA samples compared with those in healthy control suggesting the pathological role of that pathway in OA. It was noted that HA + U0126 significantly reduced the levels of pERK, chondrocyte hypertrophic markers (COL10 and RUNX2) and degenerative markers (ADAMTs5 and MMP-13), however, increased the levels of chondrogenic markers (COL2) compared to untreated or the application of HA or U0126 alone. In agreement with the results in vitro, intra-articular delivery of HA + U0126 showed significant therapeutic improvement of cartilage in rat MSX OA model compared with untreated or the application of HA or U0126 alone. Our study suggests that the combination of HA and MEK-ERK inhibition has a synergistic effect on preventing cartilage degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berenbaum F (2007) The quest for the Holy Grail: a disease-modifying osteoarthritis drug. Arthritis Res Ther 9:111

    Article  PubMed  Google Scholar 

  2. Daheshia M, Yao JQ (2008) The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J Rheumatol 35:2306–2312

    Article  PubMed  CAS  Google Scholar 

  3. Krzeski P, Buckland-Wright C, Balint G, Cline GA, Stoner K, Lyon R, Beary J, Aronstein WS, Spector TD (2007) Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther 9:R109

    Article  PubMed  Google Scholar 

  4. Pelletier JP, Fernandes JC, Brunet J, Moldovan F, Schrier D, Flory C, Martel-Pelletier J (2003) In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes. Arthritis Rheum 48:1582–1593

    Article  PubMed  CAS  Google Scholar 

  5. Papachristou DJ, Pirttiniemi P, Kantomaa T, Papavassiliou AG, Basdra EK (2005) JNK/ERK-AP-1/Runx2 induction “paves the way” to cartilage load-ignited chondroblastic differentiation. Histochem Cell Biol 124:215–223

    Article  PubMed  CAS  Google Scholar 

  6. Sondergaard BC, Schultz N, Madsen SH, Bay-Jensen AC, Kassem M, Karsdal MA (2010) MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation—divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthr Cartil 18:279–288

    Article  PubMed  Google Scholar 

  7. Fan Z, Yang H, Bau B, Soder S, Aigner T (2006) Role of mitogen-activated protein kinases and NFkappaB on IL-1beta-induced effects on collagen type II, MMP-1 and 13 mRNA expression in normal articular human chondrocytes. Rheumatol Int 26:900–903

    Article  PubMed  CAS  Google Scholar 

  8. Thalhamer T, McGrath MA, Harnett MM (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford) 47:409–414

    Article  CAS  Google Scholar 

  9. Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y (2008) Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 67(Suppl 3):iii75–iii82

    Article  PubMed  CAS  Google Scholar 

  10. Gigante A, Callegari L (2011) The role of intra-articular hyaluronan (Sinovial((R))) in the treatment of osteoarthritis. Rheumatol Int 31(4):427–444

    Article  PubMed  Google Scholar 

  11. Plaas A, Li J, Riesco J, Das R, Sandy JD, Harrison A (2011) Intraarticular injection of hyaluronan prevents cartilage erosion, periarticular fibrosis and mechanical allodynia and normalizes stance time in murine knee osteoarthritis. Arthritis Res Ther 13:R46

    Article  PubMed  Google Scholar 

  12. Gerwin N, Hops C, Lucke A (2006) Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev 58:226–242

    Article  PubMed  CAS  Google Scholar 

  13. Tang JL, Chen WP, **ong Y, Hu PF, Wu LD (2010) The anti-inflammatory effects of apocynin, inhibitor of NADPH oxidase, contrasting hyaluronic acid on articular cartilage during the development of osteoarthritis in a rabbit model. Biomed Pharmacother. doi:10.1016/j.biopha.2010.08.002

  14. Julovi SM, Ito H, Nishitani K, Jackson CJ, Nakamura T (2011) Hyaluronan inhibits matrix metalloproteinase-13 in human arthritic chondrocytes via CD44 and P38. J Orthop Res 29:258–264

    Article  PubMed  CAS  Google Scholar 

  15. Appleton CT, Usmani SE, Mort JS, Beier F (2010) Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation. Lab Invest 90:20–30

    Article  PubMed  CAS  Google Scholar 

  16. Shakibaei M, Schulze-Tanzil G, de Souza P, John T, Rahmanzadeh M, Rahmanzadeh R, Merker HJ (2001) Inhibition of mitogen-activated protein kinase kinase induces apoptosis of human chondrocytes. J Biol Chem 276:13289–13294

    Article  PubMed  CAS  Google Scholar 

  17. Jo SK, Cho WY, Sung SA, Kim HK, Won NH (2005) MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int 67:458–466

    Article  PubMed  CAS  Google Scholar 

  18. Thiel MJ, Schaefer CJ, Lesch ME, Mobley JL, Dudley DT, Tecle H, Barrett SD, Schrier DJ, Flory CM (2007) Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. Arthritis Rheum 56:3347–3357

    Article  PubMed  CAS  Google Scholar 

  19. Duan W, Chan JH, Wong CH, Leung BP, Wong WS (2004) Anti-inflammatory effects of mitogen-activated protein kinase kinase inhibitor U0126 in an asthma mouse model. J Immunol 172:7053–7059

    PubMed  CAS  Google Scholar 

  20. Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV, Alessandrini A (2001) Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci U S A 98:11569–11574

    Article  PubMed  CAS  Google Scholar 

  21. Cho DG, Mulloy MR, Chang PA, Johnson MD, Aharon AS, Robison TA, Buckles TL, Byrne DW, Drinkwater DC Jr (2004) Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest. J Thorac Cardiovasc Surg 127:1033–1040

    Article  PubMed  CAS  Google Scholar 

  22. Prasadam I, van Gennip S, Friis T, Shi W, Crawford R, **ao Y (2010) ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts. Arthritis Rheum 62:1349–1360

    Article  PubMed  CAS  Google Scholar 

  23. Mankin HJ, Buckwalter JA (2000) Articular cartilage structure, composition and function, 2nd edn. American Academy of Orthopaedic Surgeons, Rosemont

    Google Scholar 

  24. Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523–537

    PubMed  CAS  Google Scholar 

  25. Prasadam I, Friis T, Shi W, van Gennip S, Crawford R, **ao Y (2010) Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2. Bone 46:226–235

    Article  PubMed  CAS  Google Scholar 

  26. Wei A, Williams LA, Bhargav D, Shen B, Kishen T, Duffy N, Diwan AD (2009) BMP13 prevents the effects of annular injury in an ovine model. Int J Biol Sci 5:388–396

    Article  PubMed  CAS  Google Scholar 

  27. Bendele AM (2001) Animal models of osteoarthritis. J Musculoskelet Neuronal Interact 1:363–376

    PubMed  CAS  Google Scholar 

  28. Bendele AM (2002) Animal models of osteoarthritis in an era of molecular biology. J Musculoskelet Neuronal Interact 2:501–503

    PubMed  CAS  Google Scholar 

  29. Abramson SB, Attur M, Yazici Y (2006) Prospects for disease modification in osteoarthritis. Nat Clin Pract Rheumatol 2:304–312

    Article  PubMed  CAS  Google Scholar 

  30. Loeser RF, Erickson EA, Long DL (2008) Mitogen-activated protein kinases as therapeutic targets in osteoarthritis. Curr Opin Rheumatol 20:581–586

    Article  PubMed  CAS  Google Scholar 

  31. Assoian RK (2002) Common sense signalling. Nat Cell Biol 4:E187–E188

    Article  PubMed  CAS  Google Scholar 

  32. Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275

    Article  PubMed  CAS  Google Scholar 

  33. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4:556–564

    PubMed  CAS  Google Scholar 

  34. Dreier R (2010) Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res Ther 12:216

    Article  PubMed  Google Scholar 

  35. Provot S, Nachtrab G, Paruch J, Chen AP, Silva A, Kronenberg HM (2008) A-raf and B-raf are dispensable for normal endochondral bone development, and parathyroid hormone-related peptide suppresses extracellular signal-regulated kinase activation in hypertrophic chondrocytes. Mol Cell Biol 28:344–357

    Article  PubMed  CAS  Google Scholar 

  36. Wang X, Manner PA, Horner A, Shum L, Tuan RS, Nuckolls GH (2004) Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthr Cartil 12:963–973

    Article  PubMed  Google Scholar 

  37. Gonzalez-Fuentes AM, Green DM, Rossen RD, Ng B (2010) Intra-articular hyaluronic acid increases cartilage breakdown biomarker in patients with knee osteoarthritis. Clin Rheumatol 29:619–624

    Article  PubMed  Google Scholar 

  38. Gibbs P, Brown TJ, Ng R, Jennens R, Cinc E, Pho M, Michael M, Fox RM (2009) A pilot human evaluation of a formulation of irinotecan and hyaluronic acid in 5-fluorouracil-refractory metastatic colorectal cancer patients. Chemotherapy 55:49–59

    Article  PubMed  CAS  Google Scholar 

  39. Hahn SK, Kim JS, Shimobouji T (2007) Injectable hyaluronic acid microhydrogels for controlled release formulation of erythropoietin. J Biomed Mater Res A 80:916–924

    PubMed  Google Scholar 

  40. Miyakoshi N, Kobayashi M, Nozaka K, Okada K, Shimada Y, Itoi E (2005) Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits. Arch Orthop Trauma Surg 125:683–692

    Article  PubMed  Google Scholar 

  41. Hedberg EL, Shih CK, Solchaga LA, Caplan AI, Mikos AG (2004) Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers. J Control Release 100:257–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank NHMRC, Australian Orthopaedic Association and Prince Charles Hospital Foundation for providing the funding. The authors would also like to thank the staff at the Medical Engineering research facility for assisting the animal work.

Competing interests

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira Prasadam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasadam, I., Mao, X., Shi, W. et al. Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment. J Mol Med 91, 369–380 (2013). https://doi.org/10.1007/s00109-012-0953-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0953-5

Keywords

Navigation