Log in

Synthesis, antiproliferative, and antimicrobial properties of novel phthalimide derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this research, a series of new phthalimide derivatives with disulfide bonds were designed and synthesized, and their in vitro antiproliferative activities against normal cell lines L929, human cancer cells Hela, MCF-7, and A549 were assessed via the CCK-8 assay. At the same time, in vitro antimicrobial activities of all compounds were evaluated against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The preliminary bioassay results showed that a series of derivatives of phthalimide 6a–e, 7a–e, 8a–e, and 9a–e exhibited different degrees of antiproliferative activity, and some compounds revealed higher antiproliferative effects than the positive control 5-fluorouracil. Compound 9b (IC50 = 2.86 μM) exhibited the best proliferation inhibitory activities against A549 cells. It is shown that compounds 6b (IC50 = 2.94 μM) and 6c (IC50 = 3.20 μM) exhibited excellent biological activities against Hela cells. Compound 9b (IC50 = 3.21 μM) displayed the highest antitumor activities against MCF-7 cells. In addition, most of the target compounds had relatively low cytotoxicities against the normal cell line L929. The biological results indicated that all the tested compounds possessed antimicrobial activity with certain degrees against E. coli and S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Chowrasia D, Karthikeyan C, Choure L, Sahabjada, Gupta M, Arshad M, et al. Synthesis, characterization and anticancer activity of some fluorinated3,6-diaryl-[1,2,4] triaz-olo[3,4-b][1,3,4]thiadiazoles. Arab J Chem. 2017;10:S2424–S2428.

    Article  CAS  Google Scholar 

  3. Khan I, Ali S, Hameed S, Rama NH, Hussain MT, Wadood A, et al. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Eur J Med Chem. 2010;45:5200–7.

    Article  PubMed  CAS  Google Scholar 

  4. Bektaş H, Sökmen BB, Aydın S, Menteşe E, Bektaş A, Dilekçi G. Design, synthesis, and characterization of some new benzimidazole derivatives and biological evaluation. J Heterocycl Chem. 2020;57:2234–42.

    Article  Google Scholar 

  5. Basha NM, Reddy PR, Padmaja A, Padmavathi V. Synthesis and antioxidant activity of bis-oxazolyl/thiazolyl/imidazolyl 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. J Heterocycl Chem. 2015;53:1276–83.

    Article  Google Scholar 

  6. Martins SC, Desoti VC, Lazarin-Bidóia D, Vandresen F, Silva CC, Ueda-Nakamura T, et al. Synthesis and evaluation of the trypanocidal activity of a series of 1,3,4-thiadiazoles derivatives of R-(+)-limonene benzaldehydethiosemicarbazones. Med Chem Res. 2016;25:1193–203.

    Article  CAS  Google Scholar 

  7. Khan I, Tantray MA, Hamid H, Alam MS, Kalam A, Dhulap A. Synthesis of benzimidazole based thiadiazole and carbohydrazide conjugates as glycogen synthase kinase-3b inhibitors with antidepressant activity. Bioorg Med Chem Lett. 2016;26:4020–24.

    Article  PubMed  CAS  Google Scholar 

  8. Yadagiri B, Gurrala S, Bantu R, Nagarapu L, Polepalli S, Srujana G, et al. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents. Bioorg Med Chem Lett. 2015;25:2220–4.

    Article  PubMed  CAS  Google Scholar 

  9. Patil SR, Sarkate AP, Karnik KS, Arsondkar A, Patil V, Sangshetti JN, et al. A facile synthesis of substituted 2-(5-(benzylthio)-1,3,4-oxadiazol-2-yl) pyrazine using microwave irradiation and conventional method with antioxidant and anticancer activities. J Heterocycl Chem. 2019;56:859–66.

    Article  CAS  Google Scholar 

  10. Dekhane DV, Pawar SS, Gupta S, Shingare MS, Patil CR, Thore SN. Synthesis and antiinflammatory activity of some new 4,5-dihydro-1,5-diaryl-1H-pyrazole-3-substituted-heteroazole derivatives. Bioorg Med Chem Lett. 2011;21:6527–32.

    Article  PubMed  CAS  Google Scholar 

  11. Shkair AMH, Shakya AK, Raghavendra NM, Naik RR. Molecular modeling, synthesis and pharmacological evaluation of 1,3,4-thiadiazoles as anti-inflammatory and analgesic agents. Med Chem. 2016;12:90–100.

    Article  PubMed  CAS  Google Scholar 

  12. Mohamed MI, Kandile NG, Zaky HT. Synthesis and antimicrobial activity of 1,3,4-Oxadiazole-2(3H)-thione and azidomethanone derivatives based on quinoline-4-carbohy-drazide derivatives. J Heterocycl Chem. 2017;54:35–43.

    Article  CAS  Google Scholar 

  13. Ghelani SM, Khunt HR, Naliapara YT. Design, synthesis, characterization, and antimicrobial screening of novel indazole bearing oxadiazole derivatives. J Heterocycl Chem. 2017;54:65–70.

    Article  CAS  Google Scholar 

  14. Borthakur SK, Borthakur S, Goswami D, Boruah P, Kalita PK. Synthesis and antifungal activities of some new 5,7-disubstituted[1,2,4]triazolo[1,5-a]pyrimidin-6-one derivatives. J Heterocycl Chem. 2016;53:2079–83.

    Article  CAS  Google Scholar 

  15. Zahran MA, Abdin YG, Osman AM, Gamal-Eldeen AM, Talaat RM, Pedersen EB. Synthesis and evaluation of thalidomide and phthalimide esters as antitumor agents. Arch Pharm. 2015;347:642–9.

    Article  Google Scholar 

  16. Rezaei Z, Moghimi S, Javaheri R, Asadi M, Mahdavi M, Shabani S, et al. Synthesis and biological evaluation of 1,3,4-thiadiazole linked phthalimide derivatives as anticancer agents. Lett Drug Des Disco. 2017;14:1138–44.

    Article  CAS  Google Scholar 

  17. Meng XB, Han D, Zhang SN, Guo W, Cui JR, Li ZJ. Synthesis and anti-inflammatory activity of N-phthalimidomethyl 2,3-dideoxy- and 2,3-unsaturated glycosides. Carbohyd Res. 2007;342:1169–74.

    Article  CAS  Google Scholar 

  18. Lima LM, Castro P, Machado AL, Fraga CAM, Lugnier C, Concalves de Moraes VL, et al. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorg Med Chem. 2002;10:3067–73.

    Article  PubMed  CAS  Google Scholar 

  19. Davood A, Amini M, Azimidoost L, Rahmatpour S, Nikbakht A, Iman M, et al. Docking, synthesis, and pharmacological evaluation of isoindoline derivatives as anticonvulsant agents. Med Chem Res. 2012;22:3177–84.

    Article  Google Scholar 

  20. Vamecq J, Bac P, Herrenknecht C, Maurois P, Delcourt P, Stables JP. Synthesis and anticonvulsant and neurotoxic properties of substituted N-phenyl derivatives of the phthalimide pharmacophore. J Med Chem. 2000;43:1311–9.

    Article  PubMed  CAS  Google Scholar 

  21. Sang ZP, Wang K, Wang HF, Yu LT, Wang HJ, Ma QW, et al. Design, synthesis and biological evaluation of phthalimide-alkylamine derivatives as balanced multifunctional cholinesterase and monoamine oxidase-b inhibitors for the treatment of alzheimer’s disease. Bioorg Med Chem Lett. 2017;27:5053–9.

    Article  PubMed  CAS  Google Scholar 

  22. Panek D, Wickowska A, Wichur T, Bajda M, Malawska B. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur J Med Chem. 2017;125:676–95.

    Article  PubMed  CAS  Google Scholar 

  23. Santos JL, Yamasaki PR, Chin CM, Takashi CH, Pavan FR, Leite CQ. Synthesis and in vitro anti mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg Med Chem. 2009;17:3795–9.

    Article  PubMed  CAS  Google Scholar 

  24. Chan CL, Lien EJ, Tokes ZA. Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of 2-Hydroxy-1H-isoindolediones as new cytostatic agents. J Med Chem. 1987;30:509–14.

    Article  PubMed  CAS  Google Scholar 

  25. Kok SHL, Gambari R, Chui CH, Yuen MCW, Lin E, Wong RSM, et al. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg Med Chem. 2008;16:3626–31.

    Article  PubMed  CAS  Google Scholar 

  26. Chan SH, Lam KH, Chui CH, Gambari R, Yuen MCW, Wong RSM, et al. The preparation and in vitro antiproliferative activity of phthalimide based ketones on MDAMB-231 and SKHep-1 human carcinoma cell lines. Eur J Med Chem. 2009;44:2736–40.

    Article  PubMed  CAS  Google Scholar 

  27. Amin KM, El-masry AH, Mohamed NA, Awad GEA, Habib BS. Synthesis, characterization and antimicrobial activity of some novel isoindole-1,3-dione derivatives. Der Pharma Chem. 2013;5:97–108.

    CAS  Google Scholar 

  28. Fadda AA, Soliman NN, Bayoumy NM. Antimicrobial properties of some new synthesized benzothiazole linked carboxamide, acetohydrazide, and sulfonamide systems. J Heterocycl Chem. 2019;56:2369–78.

    Article  CAS  Google Scholar 

  29. Akgün H, Karamelekoğlu İ, Berk B, Kurnaz I, Sarıbıyık G, Öktem S, et al. Synthesis and antimycobacterial activity of some phthalimide derivatives. Bioorg Med Chem. 2012;20:4149–54.

    Article  PubMed  Google Scholar 

  30. Lee TH, Khan Z, Subedi L, Kim SY, Lee KR. New bis-thioglycosyl-1,1′-disulfides from Nasturtium officinale R. Br. and their anti-neuroinflammatory effect. Bioorg Chem. 2019;86:501–6.

    Article  PubMed  CAS  Google Scholar 

  31. Roldán-Peňa JM, Alejandre-Ramos D, López Ó, Maya I, Lagunes I, Padrón JM, et al. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and antiproliferative agents. Eur J Med Chem. 2017;138:761–73.

    Article  PubMed  Google Scholar 

  32. Cesarini S, Spallarossa A, Ranise A, Schenone S, Bruno O, Colla PL, et al. Parallel one-pot synthesis and structure–activity relationship study of symmetric formimidoester disulfides as a novel class of potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem. 2008;16:6353–63.

    Article  PubMed  CAS  Google Scholar 

  33. Moosun SB, Jhaumeer-Laulloo S, Hosten EC, Betz R, Bhowon MG. Crystal structures of o,o′-(N,N′-dipicolinyldene)diazadiphenyl disulfifide and its copper (II) complex: antioxidant, antibacterial and DNA-binding properties. Inorga Chim Acta. 2015;450:8–16.

    Article  Google Scholar 

  34. Sheppard JG, Frazier KR, Saralkar P, Hossain MF, Geldenhuys WJ, Long TE. Disulfiram-based disulfides as narrow-spectrum antibacterial agents. Bioorg Med Chem Lett. 2018;28:1298–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lin WJ, Liu SS, Hu LL, Zhang SC. Characterization and bioactivity of hepcidin-2 in zebrafish: dependence of antibacterial activity upon disulfide bridges. Peptides. 2014;57:36–42.

    Article  PubMed  CAS  Google Scholar 

  36. Dörasm B, Fahrer J. The disulfifide compound α-lipoic acid and its derivatives: a novel class of anticancer agents targeting mitochondria. Cancer Lett. 2015;371:12–19.

    Article  Google Scholar 

  37. Muthiah M, Che HL, Kalash S, Jo J, Choi SY, Kim WJ, et al. Formulation of glutathione responsive anti-proliferative nanoparticles from thiolated Akt1 siRNA and disulfifide-crosslinked PEI for effificient anti-cancer gene therapy. Colloid Surf B. 2015;126:322–7.

    Article  CAS  Google Scholar 

  38. Zhu SJ, Ying HZ, Wu Y, Qiu N, Liu T, Yang B. Design, synthesis and biological evaluation of novel podophyllotoxin derivatives bearing 4β-disulfide/trisulfide bond as cytotoxic agents. RSC Adv. 2015;5:103172–83.

    Article  CAS  Google Scholar 

  39. Liu HY, Wang HX, Li X, Wu Z, Li CW, Liu YM, et al. Synthesis, antitumor and antimicrobial evaluation of novel 1,3,4-thiadiazole derivatives bearing disulfide bond. Med Chem Res. 2018;27:1929–40.

    Article  CAS  Google Scholar 

  40. Liu JT, Chen GF, Fang XZ. Synthesis and characterization of high performance poly(thioether imide)s via aromatic nucleophilic substitution reaction of isomeric AB-type monomers. Polym Bull. 2015;72:3269–82.

    Article  CAS  Google Scholar 

  41. Bissonnette NB, Ellis JM, Hamann LG, Michailidis FR. Expedient access to saturated nitrogen heterocycles by photoredox cyclization of iminotethered dihydropyridines. Chem Sci. 2019;10:9591–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Tian** Municipal Natural Science Foundation (18JCYBJC94900) and Training Project of Innovation Team of Colleges and Universities in Tian** (TD13-5020) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Quan Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, CL., Xu, L., Li, JJ. et al. Synthesis, antiproliferative, and antimicrobial properties of novel phthalimide derivatives. Med Chem Res 31, 120–131 (2022). https://doi.org/10.1007/s00044-021-02823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02823-5

Keywords

Navigation