Log in

A combined approach based on 3D pharmacophore and docking for identification of new aurora A kinase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Aurora kinase A is involved in multiple mitotic events in cell cycle and has been identified as a major regulator of centrosome function in mitosis. Aurora A has been found to be over-expressed in many tumor types including breast, lung, colon, ovarian, pancreatic and glial cells. Thus, inhibition of aurora A can be a potential target in oncology. A five-point pharmacophore was generated using PHASE for a set of aurora A inhibitors reported in literature. The generated pharmacophore yielded statistically significant 3D-QSAR model, with a correlation coefficient r 2 of 0.936 and q 2 of 0.703. The pharmacophore indicated that presence of two aromatic ring features (R), two acceptor features (A) and one donor feature (D) is necessary for potent inhibitory activity. The database screening was done initially by use of pharmacophore followed by an interaction-based selection using docking. Twelve hits with satisfactory pharmacokinetic properties have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belanger DB, Curran PJ et al (2010) Discovery of imidazo [1, 2-a] pyrazine-based Aurora kinase inhibitors. Bioorg Med Chem Lett 20(17):5170–5174

    Article  CAS  PubMed  Google Scholar 

  • Blanchard S, William AD et al (2010) Synthesis and evaluation of alkenyl indazoles as selective Aurora kinase inhibitors. Bioorg Med Chem Lett 20(8):2443–2447

    Article  CAS  PubMed  Google Scholar 

  • Bouloc N, Large JM et al (2010) Structure-based design of imidazo [1, 2-a] pyrazine derivatives as selective inhibitors of Aurora-A kinase in cells. Bioorg Med Chem Lett 20(20):5988–5993

    Article  CAS  PubMed  Google Scholar 

  • Brazidec J-YL, Pasis A et al (2012) Structure-based design of 2, 6, 7-trisubstituted-7H-pyrrolo [2, 3-d] pyrimidines as Aurora kinases inhibitors. Bioorg Med Chem Lett 22(12):4033–4037

    Article  PubMed  Google Scholar 

  • Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4(11):842–854

    Article  CAS  PubMed  Google Scholar 

  • Carvajal RD, Tse A et al (2006) Aurora kinases: new targets for cancer therapy. Clin Cancer Res 12(23):6869–6875

    Article  CAS  PubMed  Google Scholar 

  • Deng XQ, Wang HY et al (2008) Pharmacophore modelling and virtual screening for identification of new Aurora-A kinase inhibitors. Chem Biol Drug Des 71(6):533–539

    Article  CAS  PubMed  Google Scholar 

  • Fancelli D, Moll J Jr et al (2006) 1, 4, 5, 6-tetrahydropyrrolo [3, 4-c] pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J Med Chem 49(24):7247–7251

    Article  CAS  PubMed  Google Scholar 

  • Gergely F (2008) Mitosis: Cdh1 clears the way for anaphase spindle assembly. Curr Biol 18(21):R1009–R1012

    Article  CAS  PubMed  Google Scholar 

  • Heron NM, Anderson M et al (2006) SAR and inhibitor complex structure determination of a novel class of potent and specific Aurora kinase inhibitors. Bioorg Med Chem Lett 16(5):1320–1323

    Article  CAS  PubMed  Google Scholar 

  • Hirota T, Kunitoku N et al (2003) Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114(5):585–598

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Sen S (2010) Aurora kinase inhibitors as anticancer molecules. BBA-gene regulatory mechanisms 1799(10–12):829–839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Katayama H, Sasai K et al (2003) Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36(1):55–62

    Article  PubMed  Google Scholar 

  • Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4(12):927–936

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Matsuda Y et al (1999) Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274(11):7334–7340

    Article  CAS  PubMed  Google Scholar 

  • Mao J-H, Wu D et al (2007) Crosstalk between Aurora-A and p53: frequent deletion or downregulation of Aurora-A in tumors from p53 null mice. Cancer Cell 11(2):161–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marumoto T, Zhang D et al (2005) Aurora-A-a guardian of poles. Nat Rev Cancer 5(1):42–50

    Article  CAS  PubMed  Google Scholar 

  • McClellan WJ, Dai Y et al (2011) Discovery of potent and selective thienopyrimidine inhibitors of Aurora kinases. Bioorg Med Chem Lett 21(18):5620–5624

    Article  CAS  PubMed  Google Scholar 

  • Morshed MN, Cho YS et al (2011) Computational approach to the identification of novel Aurora-A inhibitors. Bioorgan Med Chem 19(2):907–916

    Article  CAS  Google Scholar 

  • Oslob JD, Romanowski MJ et al (2008) Discovery of a potent and selective Aurora kinase inhibitor. Bioorg Med Chem Lett 18(17):4880–4884

    Article  CAS  PubMed  Google Scholar 

  • Pan W, Liu H et al (2005) Pyrimido-oxazepine as a versatile template for the development of inhibitors of specific kinases. Bioorg Med Chem Lett 15(24):5474–5477

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Karthikeyan M et al (2011) Pharmacophore filtering and 3D-QSAR in the discovery of new JAK2 inhibitors. J Mol Graph Model 30:186–197

    Article  Google Scholar 

  • Talele TT, McLaughlin ML (2008) Molecular docking/dynamics studies of Aurora A kinase inhibitors. J Mol Graph Model 26(8):1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Vader G, Lens S (2008) The Aurora kinase family in cell division and cancer. BBA-Rev Cancer 1786(1):60–72

    CAS  Google Scholar 

  • Vianello P (2007) Aminopyridines: selective AuroraA inhibitors. Expert Opin Ther Pat 17(2):255–261

    Article  CAS  Google Scholar 

  • Wang XJ, Chen YD et al (2007) The pharmacophore hypothesis of novel inhibitors for Aurora A kinase. Chin J Chem 25(12):1911–1918

    Article  CAS  Google Scholar 

  • Wiese C, O’Brien LL (2006) What’s so Bor (a) ing about Aurora-A activation? Dev Cell 11(2):133–134

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wang L et al (2011) Aurora-A kinase inhibitor scaffolds and binding modes. Drug Discov Today 16(5):260–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Department of Biotechnology, Government of India for sanction of Research Grant (F. No. BT/PR14373/Med/30/530/2010), and Schrödinger for extending the licence of Glide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmila J. Joshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, A.J., Gadhwal, M.K. & Joshi, U.J. A combined approach based on 3D pharmacophore and docking for identification of new aurora A kinase inhibitors. Med Chem Res 23, 1414–1436 (2014). https://doi.org/10.1007/s00044-013-0747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0747-5

Keywords

Navigation