Log in

Novel 2-pyrazoline derivatives as potential anticonvulsant agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of new 2-pyrazoline derivatives has been synthesized by reacting 3-(substituted-phenyl)-1-pyridin-2-yl-propenones using two routes one using thiosemicarbazide and the other by hydrazine hydrate. The chemical structures were established by IR, Mass, 1H-NMR, 13C-NMR spectroscopic data, and elemental analysis. The anticonvulsant activity of the synthesized compounds was evaluated by the “maximal electroshock seizure” (MES) test and pentylenetetrazole (PTZ) test using male albino mice. Compounds 2e, 5-(naphthalene-1-yl)-3-(pyridine-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioic acid amide, and 3c, N-ethyl-5-(naphthalene-1-yl)-3-(pyridine-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide showed appreciable activity in the MES as well as PTZ test at all the evaluated doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Agrawal M, Sonar PK, Saraf SK (2011) Synthesis of 1,3,5-trisubstituted pyrazoline nucleus containing compounds and screening for antimicrobial activity. Med Chem Res 21:3376–3381. doi:10.1007/s00044-011-9871-2

    Article  Google Scholar 

  • Amir M, Kumar H, Khan SA (2008) Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorg Med Chem Lett 18(3):918–922

    Article  CAS  PubMed  Google Scholar 

  • Bhatia MS, Ingale KB, Choudhari PB, Zarekar BE, Bhatia NM, Sherikar AS (2010) 3D QSAR: exploring influence of parameters of pyrazoline analogues on resistant strains of staphylococcus aureus. Int J Drug Des Discov 1:41–48

    CAS  Google Scholar 

  • Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60(13–14):1527–1533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Budakoti A, Abid M, Azam A (2007) Syntheses, characterization and in vitro antiamoebic activity of new Pd(II) complexes with 1-N-substituted thiocarbamoyl-3,5-diphenyl-2-pyrazoline derivatives. Eur J Med Chem 42(4):544–551

    Article  CAS  PubMed  Google Scholar 

  • Budakoti A, Bhat AR, Athar F, Azam A (2008) Syntheses and evaluation of 3-(3-bromo phenyl)-5-phenyl-1-(thiazolo [4,5-b] quinoxaline-2-yl)-2-pyrazoline derivatives. Eur J Med Chem 43(8):1749–1757

    Article  CAS  PubMed  Google Scholar 

  • Chimenti F, Bolasco A, Manna F, Secci D, Chimenti P, Befani O, Turini P, Giovannini V, Mondovi B, Cirilli R, La Torre F (2004) Synthesis and selective inhibitory activity of 1-acetyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives against monoamine oxidase. J Med Chem 47(8):2071–2074

    Article  CAS  PubMed  Google Scholar 

  • Chimenti F, Carradori S, Secci D, Bolasco A, Bizzarri B, Chimenti P, Granese A, Yanez M, Orallo F (2010) Synthesis and inhibitory activity against human monoamine oxidase of N1-thiocarbamoyl-3,5-di(hetero)aryl-4,5-dihydro-(1H)-pyrazole derivatives. Eur J Med Chem 45(2):800–804

    Article  CAS  PubMed  Google Scholar 

  • Das N, Dash B, Dhanawat M, Shrivastava SK (2012) Design, synthesis, preliminary pharmacological evaluation and docking studies of pyrazoline derivatives. Chem Pap 66(1):67–74. doi:10.2478/s11696-11011-10106-11692

    Article  CAS  Google Scholar 

  • Dawane BS, Konda SG, Mandawad GG, Shaikh BM (2010) Poly(ethylene glycol) (PEG-400) as an alternative reaction solvent for the synthesis of some new 1-(4-(4′-chlorophenyl)-2-thiazolyl)-3-aryl-5-(2-butyl-4-chloro-1H-imidazol-5yl)-2-pyrazolines and their in vitro antimicrobial evaluation. Eur J Med Chem 45(1):387–392

    Article  CAS  PubMed  Google Scholar 

  • Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (2007) Vogel’s textbook of practical organic chemistry, 5th edn. Dorling Kindersley Pvt. Ltd, New Delhi

    Google Scholar 

  • Ghorab MM, Ragab FA, Alqasoumi SI, Alafeefy AM, Aboulmagd SA (2010) Synthesis of some new pyrazolo[3,4-H]pyrimidine derivatives of expected anticancer and radioprotective activity. Eur J Med Chem 45(1):171–178

    Article  CAS  PubMed  Google Scholar 

  • Guniz Kucukguzel S, Rollas S, Erdeniz H, Kiraz M, Cevdet Ekinci A, Vidin A (2000) Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines. Eur J Med Chem 35(7–8):761–771

    Article  CAS  PubMed  Google Scholar 

  • Harrold MW, Yee NS (eds) (2005) Principles of Pharmacodynamics and Medicinal Chemistry, vol 1. In Comprehensive Medicinal Chemistry, 6th edn. Elsevier Publication, New Delhi (India)

    Google Scholar 

  • Horning EC (1985) Organic Syntheses, 2nd edn. Wiley, New York

    Google Scholar 

  • Jayaprakash V, Sinha BN, Ucar G, Ercan A (2008) Pyrazoline-based mycobactin analogues as MAO-inhibitors. Bioorg Med Chem Lett 18(24):6362–6368

    Article  CAS  PubMed  Google Scholar 

  • Jones OT (2002) Ca2+ channels and epilepsy. Eur J Pharmacol 447(2–3):211–225

    Article  CAS  PubMed  Google Scholar 

  • Kwan P, Sills GJ, Brodie MJ (2001) The mechanisms of action of commonly used antiepileptic drugs. Pharmacol Ther 90(1):21–34

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein DH, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL (2005) Harrison’s principles of internal medicine, vol Volume-II, 16th edn. Mc Graw-Hill Medical Publishing Division, New York

    Google Scholar 

  • Manna F, Chimenti F, Bolasco A, Bizzarri B, Befani O, Pietrangeli P, Mondovi B, Turini P (1998) Inhibitory effect of 1,3,5-triphenyl-4,5-dihydro-(1H)-pyrazole derivatives on activity of amine oxidases. J Enzyme Inhib 13(3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Manna F, Chimenti F, Bolasco A, Secci D, Bizzarri B, Befani O, Turini P, Mondovi B, Alcaro S, Tafi A (2002) Inhibition of amine oxidases activity by 1-acetyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives. Bioorg Med Chem Lett 12(24):3629–3633

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir Z, Kandilci HB, Gumusel B, Calis U, Bilgin AA (2007) Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur J Med Chem 42(3):373–379

    Article  PubMed  Google Scholar 

  • Ozdemir Z, Kandilci HB, Gumusel B, Calis U, Bilgin AA (2008) Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-thienyl) pyrazoline derivatives. Arch Pharm (Weinheim) 341(11):701–707

    Article  CAS  Google Scholar 

  • Palaska E, Aytemir M, Uzbay IT, Erol D (2001) Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur J Med Chem 36(6):539–543

    Article  CAS  PubMed  Google Scholar 

  • Parmar SS, Pandey BR, Dwivedi C (1974) Anticonvulsant activity and monoamine oxidase inhibitory properties of 1,3,5-trisubstituted pyrazolines. J Pharm Sci 63:1152–1155

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Siddiqui AA (2010) Pyrazoline derivatives: a worthy insight into the recent advances and potential pharmacological activities. Int J Pharm Sci Drug Res 2(3):165–175

    CAS  Google Scholar 

  • Rajendra Prasad Y, Lakshmana Rao A, Prasoona L, Murali K, Ravi Kumar P (2005) Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorg Med Chem Lett 15(22):5030–5034

    Article  CAS  PubMed  Google Scholar 

  • Rani P, Srivastava VK, Kumar A (2004) Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur J Med Chem 39(5):449–452

    Article  CAS  PubMed  Google Scholar 

  • Revanasiddappa BC, Rao RN, Subrahmanyam EVS, Satyanarayana D (2010) Synthesis and biological evaluation of some novel 1,3,5-trisubstituted pyrazolines. E J Chem 1:295–298

    Article  Google Scholar 

  • Ruhoglu O, Ozdemir Z, Calis U, Gumusel B, Bilgin AA (2005) Synthesis and pharmacological studies on the antidepressant and anticonvulsant activities of some 1,3,5-trisubstituted pyrazolines. Arzneim- Forsch/Drug Res 55:431–436

    CAS  Google Scholar 

  • Stirrett KL, Ferreras JA, Jayaprakash V, Sinha BN, Ren T, Quadri LE (2008) Small molecules with structural similarities to siderophores as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis. Bioorg Med Chem Lett 18(8):2662–2668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turan-Zitouni G, Chevallet P, Kilic FS, Erol K (2000) Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity. Eur J Med Chem 35(6):635–641

    Article  CAS  PubMed  Google Scholar 

  • Vardanyan R, Hruby V (2006) Synthesis of essential drugs, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our sincere gratitude to Central Drugs Research Institute, Lucknow, India for providing the library facilities and sophisticated analytical instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra K. Saraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandari, S., Tripathi, A.C. & Saraf, S.K. Novel 2-pyrazoline derivatives as potential anticonvulsant agents. Med Chem Res 22, 5290–5296 (2013). https://doi.org/10.1007/s00044-013-0530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0530-7

Keywords

Navigation