Log in

Floyd maps for relatively hyperbolic groups

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let \({\mathbf{delta}_{\mathcal S,\lambda}}\) denote the Floyd metric on a discrete group G generated by a finite set \({\mathcal S}\) with respect to the scaling function f n  = λ n for a positive λ < 1. We prove that if G is relatively hyperbolic with respect to a collection \({\mathcal P}\) of subgroups then there exists λ such that the identity map \({G\to G}\) extends to a continuous equivariant map from the completion with respect to \({\mathbf{\delta}_{\mathcal S,\lambda}}\) to the Bowditch completion of G with respect to \({\mathcal P}\). In order to optimize the proof and the usage of the map theorem we propose two new definitions of relative hyperbolicity equivalent to the other known definitions. In our approach some “visibility” conditions in graphs are essential. We introduce a class of “visibility actions” that contains the class of relatively hyperbolic actions. The convergence property still holds for the visibility actions. Let a locally compact group G act on a compactum Λ with convergence property and on a locally compact Hausdorff space Ω properly and cocomactly. Then the topologies on Λ and Ω extend uniquely to a topology on the direct union \({T=\Lambda{\sqcup}\Omega}\) making T a compact Hausdorff space such that the action \({G{\curvearrowright}T}\) has convergence property. We call T the attractor sum of Λ and Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki. Topologie Générale, Ch. IX. Hermann (1958).

  2. N. Bourbaki. Topologie Générale, Ch. 1–4. Diffusion, Paris (1971).

  3. B.H. Bowditch. Relatively hyperbolic groups (1997). Preprint. http://www.warwick.ac.uk/masgak/papers/bhb-relhyp.pdf.

  4. B.H. Bowditch. Convergence groups and configuration spaces. In: J. Cossey, C.F. Miller, W.D. Neumann, M. Shapiro (eds.) Group Theory Down Under. de Gruyter (1999), pp. 23–54.

  5. W. Disks and M.J. Dunwoody. Groups acting on Graphs. Cambridge Sies in Advanced Mathematics, Vol. 17. Cambridge University Press (1989). ISBN 0 521 23033 0.

  6. J. Dugindji. Topology. Allyn and Bacon, Inc. (1966).

  7. Engelking R.: General Topology. Heldermann Verlag, Berlin (1989)

    MATH  Google Scholar 

  8. Farb B.: Relatively hyperbolic groups. GAFA 8, 810–840 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Floyd W.J.: Group completions and limit sets of Kleinian groups. Inventiones Mathematicae 57, 205–218 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frink A.H.: Distance functions and the metrisation problem. Bulletin of the American Mathematical Society 43, 133–142 (1937)

    Article  MathSciNet  Google Scholar 

  11. Gerasimov V.: Exnansive convergence groups are relatively hyperbolic. GAFA 19, 137–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Gerasimov and L. Potyagailo. Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups. JEMS. ar**v:0908.0705 [math.GR]. To appear.

  13. V. Gerasimov and L. Potyagailo. Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity. ar**v:1008.3470 [math.GR].

  14. V. Gerasimov and L. Potyagailo. Quasiconvexity in the relatively hyperbolic groups. ar**v:1103.1211.

  15. E. Ghys and P. de la Harpe. Sur Les Groupes Hyperboliques D’appès Mikhael Gromov. Progress in Mathematics, Vol. 83. Birkhäuser (1990).

  16. M. Gromov. Hyperbolic groups. In: S.M. Gersten (ed.) Essays in Group Theory M.S.R.I. Publications, No. 8, Springer, Berlin (1987), pp. 75–263.

  17. Hruska C.: Relative hyperbolicity and relative quasiconvexity for countable groups. Algebraic and Geometric Topology 10, 1807–1856 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karlsson A.: Free subgroups of groups with non-trivial Floyd boundary. Communications in Algebra 31, 5361–5376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.L. Kelly. General Topology, Graduate Texts in Mathematics, Vol. 27. Springer, New York (1975).

  20. Mj, Mahan. Cannon-Thurston Maps for Kleinian Groups. ar**v:1002.0996v2 [Math.GT] (2010).

  21. S. Mac Lane. Categories for the Working Mathematician, 2nd edn. Springer, Berlin. ISBN 0-387-98403-8. (1998). (Volume 5 in the series Graduate Texts in Mathematics).

  22. Mitra M.: Cannon-Thurston maps for hyperbolic group extensions. Topology (3) 37, 527–538 (1998)

    Article  MATH  Google Scholar 

  23. J.R. Stallings. Group Theory and Three-Dimensional Manifolds. Yale Mathematical Monograph, Vol. 4, Yale University Press, New Haven (1971).

  24. J.W. Tukey. Convergence and uniformity in topology. Annals of Mathematical Studies, 2 (1940).

  25. P. Tukia. A Remark on The Paper by Floyd, Holomorphic Functions and Moduli, Vol. II (Berkeley CA, 1986), 165–172, MSRI Publications, Vol. 11. Springer, New York (1988).

  26. Tukia P.: Conical limit points and uniform convergence groups. Journal für die reine und angewandte Mathematik 501, 71–98 (1998)

    MathSciNet  MATH  Google Scholar 

  27. A. Weil. Sur les espace à structure uniforme et sur la topologie générale, Paris (1938).

  28. Yaman A.: A topological characterisation of relatively hyperbolic groups. Journal für die Reine und Angewandte Mathematik 566, 41–89 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gerasimov.

Additional information

This work was partially supported by Max Plank Institut of Mathematics, Bonn, Germany and by Université Lille 1, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, V. Floyd maps for relatively hyperbolic groups. Geom. Funct. Anal. 22, 1361–1399 (2012). https://doi.org/10.1007/s00039-012-0175-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0175-6

Keywords and phrases

Mathematics Subject Classification (2000)

Navigation