Log in

Winning Sets, Quasiconformal Maps and Diophantine Approximation

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

This paper describes two new types of winning sets in \({\mathbb{R}^n}\), defined using variants of Schmidt’s game. These strong and absolute winning sets include many Diophantine sets of measure zero and first category, and have good behavior under countable intersections. Most notably, they are invariant under quasiconformal maps, while classical winning sets are not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Anderson, M.K. Vamanamurthy, M.K. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, Inc., 1997.

  2. R. Broderick, Y. Bugeaud, L. Fishman, D. Kleinbock, B. Weiss, Schmidt’s game, fractals, and numbers normal to no base, preprint (2009).

  3. Dani S.G.: Bounded orbits of flows on homogeneous spaces. Comment. Math. Helv. 61, 636–660 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dani S.G.: On orbits of endomorphisms of tori and the Schmidt game. Ergodic Theory Dynam. Systems 8, 523–529 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. S.G. Dani, On badly approximable numbers, Schmidt games and bounded orbits of flows, in “Number Theory and Dynamical Systems (York, 1987)”, London Math. Soc. Lecture Note Ser. 134, Cambridge Univ. Press (1989), 69–86.

  6. D. Färm. Simultaneously non-dense orbits under different expanding maps, preprint (2009).

  7. Fishman L.: Schmidt’s game on fractals. Israel J. Math. 171, 77–92 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freiling C.: An answer to a question of Schmidt on (α, β) games. J. Number Theory 15, 226–228 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gehring F.W.: The L p-integrability of the partial derivatives of a quasiconformal map**. Acta Math. 130, 265–277 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. F.W. Gehring, Topics in quasiconformal map**s, in “Proceedings of the International Conference of Mathematicians, Amer. Math. Soc. (1986), 62–80; reprinted in Springer Lecture Notes in Math. 1508 (1992).

  11. Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Kleinbock, B. Weiss, Modified Schmidt games and Diophantine approximation with weights, preprint (2009).

  13. Kuusalo T.: Boundary map**s of geometric isomorphisms of Fuchsian groups. Ann. Acad. Sci. Fenn. 545, 7 (1973)

    MathSciNet  Google Scholar 

  14. McMullen C.: Thermodynamics, dimension and the Weil-Petersson metric. Inv. Math. 173, 365–425 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. J.C. Oxtoby, Measure and Category, Springer-Verlag, 1980.

  16. Schmidt W.M.: On badly approximable numbers and certain games. Trans. Amer. Math. Soc. 123, 178–199 (1966)

    MATH  MathSciNet  Google Scholar 

  17. Telgársky R.: Topological games: on the 50th anniversary of the Banach–Mazur game. Rocky Mountain J. Math. 17, 227–276 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tseng J.: Schmidt games and Markov partitions. Nonlinearity 22, 525–543 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tukia P., Väisälä J.: Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. 5, 97–114 (1980)

    MATH  Google Scholar 

  20. J. Väisälä, Lectures on n-Dimensional Quasiconformal Map**s, Springer Lecture Notes in Math. 229 (1971).

  21. Väisälä J.: Porous sets and quasisymmetric maps. Trans. Amer. Math. Soc. 299, 525–533 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by the NSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMullen, C.T. Winning Sets, Quasiconformal Maps and Diophantine Approximation. Geom. Funct. Anal. 20, 726–740 (2010). https://doi.org/10.1007/s00039-010-0078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0078-3

Keywords and phrases

2010 Mathematics Subject Classification

Navigation