Log in

A Hardware Acceleration Platform for AI-Based Inference at the Edge

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Machine learning (ML) algorithms are already transforming the way data are collected and processed in the data center, where some form of AI has permeated most areas of computing. The integration of AI algorithms at the edge is the next logical step which is already under investigation. However, harnessing such algorithms at the edge will require more computing power than what current platforms offer. In this paper, we present an FPGA system-on-chip-based architecture that supports the acceleration of ML algorithms in an edge environment. The system supports dynamic deployment of ML functions driven either locally or remotely, thus achieving a remarkable degree of flexibility . We demonstrate the efficacy of this architecture by executing a version of the well-known YOLO classifier which demonstrates competitive performance while requiring a reasonable amount of resources on the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Abbasi, R.Y. Lau, D.E. Brown, Predicting behavior. IEEE Intell. Syst. 30(3), 35–43 (2015)

    Article  Google Scholar 

  2. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  3. I. Farris, T. Taleb, H. Flinck, A. Iera, Providing ultra-short latency to user-centric 5G applications at the mobile network edge. Trans. Emerg. Telecommun. Technol. 29(4), e3169 (2018)

    Article  Google Scholar 

  4. J. Gazda, P. Tóth, J. Zausinová, M. Vološin, V. Gazda, On the interdependence of the financial market and open access spectrum market in the 5G network. Symmetry 10(1), 12 (2018)

    Article  Google Scholar 

  5. Y. He, F.R. Yu, N. Zhao, H. Yin, H. Yao, R.C. Qiu, Big Data Analytics in Mobile Cellular Networks. IEEE Access 4, 1985–1996 (2016)

    Article  Google Scholar 

  6. S. Jiang, D. He, C. Yang, C. Xu, G. Luo, Y. Chen, Y. Liu, J. Jiang. Accelerating mobile applications at the network edge with software-programmable FPGAs, in Proceedings—IEEE INFOCOM, vol. 2018 (IEEE, 2018), pp. 55–62

  7. K. Karras, O. Kipouridis, N. Zotos, E. Markakis, G. Bogdos. Enabling virtualized programmable logic resources at the edge and the cloud, in Hardware Accelerators in Data Centers (Springer, Cham, 2018), pp. 149–162

    Google Scholar 

  8. E. Markakis, E. Pallis, C. Skianis, V. Zacharopoulos. Exploiting peer-to-peer technology for network and resource management in interactive broadcasting environments, in GLOBECOM—IEEE Global Telecommunications Conference (IEEE, 2010), pages 1–5

  9. E.K. Markakis, K. Karras, A. Sideris, G. Alexiou, E. Pallis, Computing, caching, and communication at the edge: the cornerstone for building a versatile 5G ecosystem. IEEE Commun. Mag. 55(11), 152–157 (2017)

    Article  Google Scholar 

  10. E.K. Markakis, K. Karras, N. Zotos, A. Sideris, T. Moysiadis, A. Corsaro, G. Alexiou, C. Skianis, G. Mastorakis, C.X. Mavromoustakis, E. Pallis, EXEGESIS: extreme edge resource harvesting for a virtualized fog environment. IEEE Commun. Mag. 55(7), 173–179 (2017)

    Article  Google Scholar 

  11. K. Mishra, R. Rani. Churn prediction in telecommunication using machine learning, in International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS 2017 (IEEE, 2018), pp. 2252–2257

  12. R.K. Pathinarupothi, P. Durga, E.S. Rangan, IoT-based smart edge for global health: remote monitoring with severity detection and alerts transmission. IEEE Internet Things J. 6(2), 2449–2462 (2019)

    Article  Google Scholar 

  13. A.R. Prasad, S. Lakshminarayanan, S. Arumugam, Market dynamics and security considerations of 5G. J. ICT Standard. 5(3), 225–250 (2018)

    Article  Google Scholar 

  14. T.B. Preußer, G. Gambardella, N. Fraser, M. Blott. Inference of quantized neural networks on heterogeneous all-programmable devices, in Proceedings of the 2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018, vol. 2018 (IEEE, 2018), pp. 833–838

  15. R. Rackwitz, Structural reliability analysis and prediction. Struct. Saf. 23(2), 194–195 (2002)

    Article  Google Scholar 

  16. D. Radosavljevik, P. Van Der Putten. Preventing churn intelecommunications: the forgotten network, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8207LNCS (Springer, Berlin, 2013), pp. 357–368

    Chapter  Google Scholar 

  17. J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You only look once: unified, real-time object detection, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016 (2016), pp. 779–788

  18. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  19. M. T. Ribeiro, S. Singh, C. Guestrin. “Why Should I Trust You?”, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’16. (ACM Press, New York, 2016), pp. 1135–1144

  20. F. Ricci, B. Shapira, L. Rokach. Recommender systems: introduction and challenges, in Recommender Systems Handbook, 2nd edn. chap. 1.2 (Springer, Boston, 2015), pages 1–34

    Chapter  Google Scholar 

  21. J. Yan, Z. Lei, L. Wen, S. Z. Li. The fastest deformable part model for object detection, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2014), pp. 2497–2504

  22. K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, W. **ang, Big data-driven optimization for mobile networks toward 5G. IEEE Netw. 30(1), 44–51 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation, with Title H2020-FORTIKA “cyber-security Accelerator for trusted SMEs IT Ecosystem” under Grant Agreement No. 740690.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Markakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karras, K., Pallis, E., Mastorakis, G. et al. A Hardware Acceleration Platform for AI-Based Inference at the Edge. Circuits Syst Signal Process 39, 1059–1070 (2020). https://doi.org/10.1007/s00034-019-01226-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01226-7

Keywords

Navigation