Log in

Patch ideals and Peterson varieties

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Patch ideals encode neighbourhoods of a variety in GL n /B. For Peterson varieties we determine generators for these ideals and show they are complete intersections, and thus Cohen–Macaulay and Gorenstein. Consequently, we

  • — combinatorially describe the singular locus of the Peterson variety;

  • — give an explicit equivariant K-theory localization formula; and

  • — extend some results of [B. Kostant ‘96] and of D. Peterson to intersections of Peterson varieties with Schubert varieties.

We conjecture that the tangent cones are Cohen–Macaulay, and that their h-polynomials are nonnegative and upper-semicontinuous. Similarly, we use patch ideals to briey analyze other examples of torus invariant subvarieties of GL n /B, including Richardson varieties and Springer fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973), no. 2, 480–497.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Billey, I. Coskun, Singularities of generalized Richardson varieties, ar**v:1008.2785.

  3. S. Billey, V. Lakshmibai, Singular Loci of Schubert Varieties, Progress in Mathematics, Vol. 182, Birkhäuser, Boston, MA, 2000.

    Book  Google Scholar 

  4. M. Brion, Lectures on the geometry of flag varieties, in: Topics in Cohomological Studies of Algebraic Varieties, Trends in Mathematics, Birkhäuser, Basel, 2005, pp. 33–85.

  5. M. Brion, S. Kumar, Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics, Vol. 231, Birkhäuser, Boston, 2005.

    Google Scholar 

  6. W. Bruns, J. Herzog, Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  7. J. Carrell, J. Kuttler, Smooth points of T-stable varieties in G/B and the Peterson map, Invent. Math. 151 (2003), no. 2, 353–379.

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, Boston, MA, 1997.

    MATH  Google Scholar 

  9. I. Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), no. 3, 485–523.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. De Mari, C. Procesi, M. Shayman, Hessenberg varieties, Trans. Amer. Math. Soc. 332 (1992) 529–534.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  12. A. Fink, D. Speyer, K-classes of matroids and equivariant localization, in: 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011, Reykjavik, Iceland), Discrete Math. Theor. Comput. Sci. (DMTCS Proc. AO), Nancy, 2011, pp. 339–350.

  13. S. Fomin, S. Gelfand, A. Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), 565–596.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Fresse, Singular components of Springer fibers in the two-column case, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2429–2444.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Fresse, A. Melnikov, On the singularity of the irreducible components of a Springer fiber in \( \mathfrak{s}{\mathfrak{l}_n} \), Selecta Math. (N.S.) 16 (2010), no. 3, 393–418.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Fulton, Flags, Schubert polynomials, degeneracy loci and determinantal formulas, Duke Math. J. 65 (1991), no. 3, 381–420.

    Article  MathSciNet  Google Scholar 

  17. M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25–83.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Harada, J. Tymoczko, A positive Monk formula in the S 1-equivariant cohomology of type A Peterson varieties, Proc. Lond. Math. Soc. (3) 103 (2011), no. 1, 40–72.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 21, Springer-Verlag, New York, 1964.

    Google Scholar 

  20. D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979) 165–184.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Knutson, Schubert patches degenerate to subword complexes, Transform. Groups 13 (2008), no. 3–4, 715–726.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Knutson, Frobenius splitting and degeneration, especially of Schubert varieties, ar**v:0911.4941.

  23. A. Knutson, T. Lam, D. Speyer, Projections of Richardson varieties, to appear in J. für die reine angew. Math., ar**v:0903.3694.

  24. A. Knutson, E. Miller, Gröbner geometry of Schubert polynomials, Ann. of Math. (2) 161 (2005), no. 3, 1245–1318.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Knutson, I. Rosu, Appendix to I. Rosu, Equivariant K-theory and equivariant cohomology, Math. Z. 243 (1999), no. 3, 423–448.

    MathSciNet  Google Scholar 

  26. B. Kostant, Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight, Selecta Math. (N.S.) 2 (1996), no. 1, 43–91.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Kreiman, V. Lakshmibai, Multiplicities at singular points of Schubert varieties in the Grassmannian, in: Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, pp. 553–563.

  28. M. Kreuzer, L. Robbiano, Computational Commutative Algebra. 2, Springer-Verlag, Berlin, 2005.

  29. V. Lakshmibai, P. Littelmann, P. Magyar, Standard monomial theory and applications, in: Representation Theories and Algebraic Geometry, A. Broer ed., NATO ASI Series C: Math. and Phys. Sci, Vol. 514, Kluwer, Dordrecht, 1998, pp. 319–364.

  30. L. Li, A. Yong, Some degenerations of Kazhdan-Lusztig ideals and multiplicities of Schubert varieties, Adv. Math. 229 (2012), 633–667.

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Li, A. Yong, Drift configurations and Kazhdan-Lusztig polynomials, Algebra and Number Theory J. 5 (2011), no. 5, 595–626.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Miller, B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, Vol. 227, Springer-Verlag, New York, 2004.

    Google Scholar 

  33. N. Perrin, E. Smirnov, Springer fiber components in the two columns case for types A and D are normal, ar**v:0907.0607.

  34. D. Peterson, Quantum Cohomology of G/P, Lecture Course, MIT, Spring Term, 1997.

  35. K. Rietsch, Quantum cohomology rings of Grassmannians and total positivity, Duke Math. J. 110 (2001), no. 3, 523–553.

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Rietsch, Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties, J. Amer. Math. Soc. 16 (2003), no. 2, 363–392 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Sommers, J. Tymoczko. Exponents for B-stable ideals, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3493–3509 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Snider, PhD thesis, Cornell University, 2011.

  39. J. Tymoczko, Linear conditions imposed on flag varieties, Amer. J. Math. 128 (2006), no. 6, 1587–1604.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Tymoczko, Paving Hessenberg varieties by affines, Selecta Math. (N.S.) 13 (2007), no. 2, 353–367.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. A. Vargas, Fixed points under the action of unipotent elements of SL n in the flag variety, Bol. Soc. Mat. Mexicana 24 (1979), 1–14.

    MathSciNet  MATH  Google Scholar 

  42. A. Woo, A. Yong, Governing singularities of Schubert varieties, J. Algebra 320 (2008), no. 2, 495–520.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Woo, A. Yong, A Gröbner basis for Kazhdan-Lusztig ideals, Amer. J. Math. 134 (2012), no. 4, 1089–1137.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Insko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Insko, E., Yong, A. Patch ideals and Peterson varieties. Transformation Groups 17, 1011–1036 (2012). https://doi.org/10.1007/s00031-012-9201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-012-9201-x

Keywords

Navigation