Log in

Variation in nitrate uptake and denitrification rates across a salinity gradient in Mediterranean semiarid streams

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Streams are significant locations for nitrate (NO3 ) processing within landscapes. This is especially important in dry climates given the limited water availability for biological processes elsewhere. In arid and semiarid regions, many streams are naturally saline. Elevated salinity can constrain the structure and function of aquatic organisms, which is expected to increase worldwide being associated to global warming. We investigated whole-reach NO3 uptake and denitrification in nine semiarid streams of variable water salinity (i.e. from freshwater to hyposaline) to test if NO3 processing would decrease with increasing salinity. We used pulse additions and Tracer Addition for Spiraling Curve Characterization (TASCC) to measure whole-reach uptake of added NO3 , and the acetylene block technique to measure sediment denitrification. TASCC results showed that only five of nine streams were able to retain added NO3 . Of these five retentive streams, four were saline; however, salinity did not control significantly the variation in whole-reach NO3 uptake observed across streams. Other measured environmental variables such as streambed NH4 + and organic carbon availability were better at explaining this variation. Denitrification was detected in all streams except one and its variation across streams was also independent of salinity. Although denitrification rates tended to be high, their contribution to whole-reach NO3 uptake was insignificant (≤2.16 %). Alternative pathways, heterotrophic assimilation and/or dissimilatory NO3 reduction to NH4 +, were probably responsible for most whole-reach NO3 uptake. Together, our results highlight that the function of streams in controlling external NO3 inputs is highly variable and salinity does not apparently constrain this role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander RB, Böhlke JK, Boyer EW, David MB, Harvey JW, Mulholland PJ, Seitzinger SP, Tobias CR, Tonitto C, Wollheim WM (2009) Dynamic modeling of nitrogen looses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 93:91–116

    Article  CAS  Google Scholar 

  • Álvarez-Cobelas M, Rojo C, Angeler DG (2005) Mediterranean limnology: current status, gaps and the future. J Limnol 64:13–29

    Article  Google Scholar 

  • Arango CP, Tank JL, Johnson LT, Hamilton SK (2008) Assimilatory uptake rather than nitrification and denitrification determines nitrogen removal patterns in streams land use. Limnol Oceanogr 53:2558–2572

    Article  CAS  Google Scholar 

  • Arce MI, Gómez R, Suárez ML, Vidal-Abarca MR (2013) Denitrification rates and controlling factors in two agriculturally influenced temporary Mediterranean saline streams. Hydrobiologia 700:169–185

    Article  CAS  Google Scholar 

  • Arribas P, Gutiérrez-Cánovas C, Abellán P, Sánchez-Fernandez D, Picazo F, Velasco J, Millán A (2009) Tipificacion de los rios salinos ibericos. Ecosistemas 18:1–13

    Google Scholar 

  • Baker MA, Valett HM, Dahm CN (2000) Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81:3133–3148

    Article  Google Scholar 

  • Baldwin DS, Williams J (2007) Differential release of nitrogen and phosphorus from anoxic sediments. Chem Ecol 23(3):243–249

    Article  CAS  Google Scholar 

  • Baldwin DS, Rees GN, Mitchell AM, Watson G, Williams J (2006) The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 26:455–464

    Article  Google Scholar 

  • Belmar O (2013) Ecological Basis for Assessing Environmental Flow Regimes in the Segura Basin. Dissertation, University of Murcia

  • Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86:298–307

    Article  Google Scholar 

  • Bernhardt ES, Likens GE, Hall RO Jr, Buso DC, Fisher SG, Burton TM, Meyer JL, Mcdowell WH, Mayer MS, Bowden MW, Findlay SEG, Macneale KH, Stelzer RS, Lowe WH (2005) Can’t see the forest for the stream? In-stream processing and terrestrial nitrogen exports. Bioscience 55:219–230

    Article  Google Scholar 

  • Bernot MJ, Dodds WK (2005) Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems 8:442–453

    Article  CAS  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96

    Article  Google Scholar 

  • Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz C (2013) Salinization of rivers: an urgent ecological issue. Environ Pollut 173:157–167

    Article  PubMed  Google Scholar 

  • CHS (2007) Estudio general sobre la Demarcación Hidrográfica del Segura. Confederacion Hidrográfica del Segura. Ministry of Environment, Murcia

    Google Scholar 

  • Cooper SD, Lake PS, Sabater S, Melack JM, Sabo JL (2012) The effects of land use changes on streams and rivers in Mediterranean climates. Hydrobiologia. doi:10.1007/s10750-012-13334

    Google Scholar 

  • Covino TP, McGlynn B, Baker M (2010a) Separating physical and biological uptake kinetics from ambient to saturation in successive mountain stream reaches. J Geophys Res 115:G04010

    Google Scholar 

  • Covino TP, McGlynn BL, McNamara RA (2010b) Tracer Additions for Spiraling Curve Characterization (TASCC): quantifying stream nutrient uptake kinetics from ambient to saturation. Limnol Oceanogr 8:484–498

    Article  CAS  Google Scholar 

  • Doyle MW, Stanley EH, Harbor JM (2003) Hydrogeomorphic controls on phosphorus retention in streams. Water Resour Res 39:1147

    Google Scholar 

  • Earl SR, Valett HM, Webster JR (2006) Nitrogen saturation in stream ecosystem. Ecology 87:3140–3151

    Article  PubMed  Google Scholar 

  • Gardner WS, McCarthy MJ, An S, Sobolev D, Sell KS, Brock D (2006) Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnol Oceanogr 51(1):558–568

    Article  CAS  Google Scholar 

  • Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81

    Article  Google Scholar 

  • Gómez R, Hurtado I, Suárez ML, Vidal-Abarca MR (2005) Ramblas in south-east Spain: threatened and valuable ecosystems. Aquatic Conserv Mar Freshw Ecosyst 15:387–402

    Article  Google Scholar 

  • Goodale CL, Thomas SA, Fredriksen G, Elliott EM, Flinn KM, Butler TJ, Walter MT (2009) Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwaters of the Upper Susquehanna River. Biogeochemistry 93:197–218

    Article  CAS  Google Scholar 

  • Gordon ND, McMahon TA, Finlayson BL (1992) Stream hydrology: an introduction for ecologists. Wiley, West Sussex

    Google Scholar 

  • Grimm NB, Sheibley RW, Crenshaw CL, Dahm CN, Roach J, Zeglin LH (2005) N retention and transformation in urban streams. J North Am Benthol Soc 24:626–642

    Article  Google Scholar 

  • Gutiérrez-Cánovas C, Velasco J, Millán A (2009) Effects of dilution stress on the functioning of a saline Mediterranean stream. Hydrobiologia 619:119–132

    Article  Google Scholar 

  • Hall RO Jr, Tank JL, Sobota DJ et al (2009) Nitrate removal in stream ecosystems measured by 15N addition experiments: total uptake. Limnol Oceanogr 54:653–665

    Article  CAS  Google Scholar 

  • Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C, Swadling K (1991) A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210:105–144

    Article  Google Scholar 

  • Herrman K, Borchard V, Moore RH (2008) Factors affecting denitrification in agricultural headwater streams in Northeast Ohio, USA. Hydrobiologia 598:305–314

    Article  CAS  Google Scholar 

  • Hunter RG, Faulkner SP (2001) Denitrification potentials in restored and natural bottomland hardwood wetlands. Soil Sci Soc Am J 65:1865–1872

    Article  CAS  Google Scholar 

  • Inwood SE, Tank JL, Bernot MJ (2005) The influence of land use on sediment denitrification in 9 midwestern streams. J North Am Benthol Soc 24:227–245

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climatic Change) (2007) Fourth assessment report. Climatic change 2007: climatic change impacts, adaptation and vulnerability. http://www.ipcc.ch/

  • Kemp MJ, Dodds WK (2001) Centimeter-scale patterns in dissolved oxygen and nitrification rates in a prairie stream. J North Am Benthol Soc 20(3):347–357

    Article  Google Scholar 

  • Kemp MJ, Dodds WK (2002) The influence of ammonium, nitrate, and dissolved oxygen concentration, and denitrification rates associated with prairie stream substrata. Limnol Oceanogr 47:1380–1393

    Article  CAS  Google Scholar 

  • Knowles R (1990) Acetylene inhibition technique: development, advantages, and potential problems. In: Revsbech NP, Sorensen J (eds) Denitrification in soil and sediment. Plenum Press, New York, pp 151–166

    Chapter  Google Scholar 

  • Kulp TR, Han S, Saltikov CW, Lanoil BD, Zargar K, Oremland RS (2007) Effect of imposed salinity gradients on dissimilatory arsenate reduction, sulphate reduction and other microbial processes in sediments from two California soda lakes. Appl Environ Microb 73:5130–5137

    Article  CAS  Google Scholar 

  • Magalhâes CM, Joye SB, Moreira RM, Wiebe WJ, Bordalo AA (2005) Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal. Water Res 39:1783–1794

    Article  PubMed  Google Scholar 

  • Martí E, Grimm NB, Fisher SG (1997) Pre-and post-flood retention efficiency of nitrogen in a Sonoran Desert stream. J North Am Benthol Soc 16:805–819

    Article  Google Scholar 

  • Millán A, Velasco J, Gutiérrez-Cánovas C, Arribas P, Picazo F, Sánchez-Fernandez D, Abellán P (2011) Mediterranean saline streams in southeast Spain: what do we know? J Arid Environ 75:1352–1359

    Article  Google Scholar 

  • Mulholland PJ, Valett HM, Webster JR, Thomas SA, Cooper LW, Hamilton SK, Peterson BJ (2004) Stream denitrification and total nitrate uptake rates measured using 15N tracer addition approach. Limnol Oceanogr 49:809–820

    Article  CAS  Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC et al (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–205

    Article  CAS  PubMed  Google Scholar 

  • Mulholland PJ, Hall RO, Sobota JD et al (2009) Nitrate removal in stream ecosystems measured by 15N addition experiments: denitrification. Limnol Oceanogr 54:666–680

    Article  CAS  Google Scholar 

  • Mulvaney RL (1996) Nitrogen-Inorganic forms. In: Sparks DL (ed) Methods of soil analysis: chemical methods. SSSA Book Series 5. Soil Science Society of America and American Society of Agronomy, Madison, pp 1123–1184

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nielsen DL, Brock MA, Rees GN, Baldwin DS (2003) Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51:655–665

    Article  Google Scholar 

  • Niyogi DK, Bandeff JM, Selman C, Menke DE (2010) Nutrient flux, uptake and transformation in a spring-fed stream in the Missouri Ozarks, USA. Aquat Sci 72:203–212

    Article  CAS  Google Scholar 

  • O’Brien JM, Dodds WK, Wilson KC, Murdock JN, Eichmiller J (2007) The saturation of N cycling in Central Plains streams: 15N experiments across a broad gradient of nitrate concentrations. Biogeochemistry 84:31–49

    Article  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Payn RA, Webster JR, Mulholland PJ, Valett HM, Dodds WK (2005) Estimation of stream nutrient uptake from nutrient addition experiments. Limnol Oceanogr 3:174–182

    Article  CAS  Google Scholar 

  • Royer TV, Tank JL, David MB (2004) Transport and fate of nitrate in headwater agricultural streams in Illinois. J Environ Qual 33:1296–1304

    Article  CAS  PubMed  Google Scholar 

  • Rysgaard S, Thastum P, Dalsgaard T, Christensen PB, Sloth NP (1999) Effects of salinity on NH4 + adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 2:21–30

    Article  Google Scholar 

  • Santoro AE (2010) Microbial nitrogen cycling at the saltwater-freshwater interface. Hydrogeol J 18:187–202

    Article  CAS  Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724

    Article  CAS  Google Scholar 

  • Seitzinger SP, Nielsen LP, Caffrey J, Christensen PB (1993) Denitrification measurements in aquatic sediments: a comparison of three methods. Biogeochemistry 23:147–167

    Article  CAS  Google Scholar 

  • Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Drecht GV (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  CAS  PubMed  Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801

    Article  CAS  Google Scholar 

  • Sponseller RA, Heffernan JB, Fisher SG (2013) On the multiple ecological roles of water in river networks. Ecosphere 4:17

    Article  Google Scholar 

  • Steinman AD, Lamberti GA, Leavitt PR (2006) Biomass and pigments of benthic algae. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press, San Diego, pp 357–379

    Google Scholar 

  • Velasco J, Millán A, Vidal-Abarca MR, Suárez ML, Guerrero C, Ortega M (2003) Macrophytic, epipelic and epilithic primary production in a semiarid Mediterranean stream. Freshw Biol 48:1408–1420

    Article  Google Scholar 

  • Velasco J, Millán A, Hernández J, Gutiérrez C, Abellán P, Sánchez D, Ruiz M (2006) Response of biotic communities to salinity changes in a Mediterranean hypersaline stream. Saline Syst 2:1–15

    Article  Google Scholar 

  • Vidal-Abarca MR (1990) Los ríos de las cuencas áridas y semiáridas: una perspectiva ecológica comparativa y de síntesis. Scientia Gerundensis 16:219–228

    Google Scholar 

  • Vidal-Abarca MR, Suárez ML, Gómez R, Guerrero C, Sánchez-Montoya MM, Velasco J (2004) Inter-annual variation in benthic organic matter in a saline, semiarid stream of southeast Spain (Chícamo stream). Hydrobiologia 523:199–215

    Article  Google Scholar 

  • von Schiller D, Martí E, Riera JL (2009) Nitrate retention and removal in Mediterranean streams bordered by contrasting land uses: a 15N tracer study. Biogeosciences 6:181–196

    Article  Google Scholar 

  • Webster JR, Valett HM (2006) Solute dynamics. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press, San Diego, pp 169–185

    Google Scholar 

  • Williams WD (1996) The largest, highest and lowest lakes of the world: saline lakes. Verhanlungen Internationale Vereiniging für Theoretische und Angewandte Limnologie 26:61–79

    Google Scholar 

  • Wood ED, Armstrong FA, Richards FA (1967) Determination of nitrate in seawater by cadmium copper reduction to nitrite. J Mar Biol Assoc UK 47:23–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We specially thank M.M. Lloret for her help with the field and laboratory experiments and R. del Campo and R. Tornero for field assistance. Special thanks are also due to E. Martí and M. Ribot from CEAB-CSIC of Blanes (Girona, Spain) for training M. Arce in stream nutrient addition techniques, to T. Covino for support in interpreting the TASCC results, to M.F Carreño for editing Fig. 1, to H. Warburton for revising English and two anonymous reviewers for providing helpful comments on the manuscript. This research was funded by the European Regional Development Fund (FEDER) and by the Spanish Ministry of Economy and Competitiveness through Project CGL2010-21458. M.I Arce was funded by a research grant from the German Academic Exchange Service (DAAD) and D. von Schiller was funded by a post-doctoral contract within the EU project MIRAGE (FP7-ENV-2007-1-211732) and a Juan de la Cierva contract from the Spanish Ministry of Economy and Competitiveness (JCI-2010-06397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Arce.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arce, M.I., von Schiller, D. & Gómez, R. Variation in nitrate uptake and denitrification rates across a salinity gradient in Mediterranean semiarid streams. Aquat Sci 76, 295–311 (2014). https://doi.org/10.1007/s00027-014-0336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0336-9

Keywords

Navigation