Log in

Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Thunderstorms are known to produce turbulence. Such turbulence is commonly referred to as convectively induced turbulence or CIT, and can be hazardous to aviation. Although this turbulence can occur both within and outside the convection, out-of-cloud CIT is particularly hazardous, since it occurs in clear air and cannot be seen by eye or onboard radar. Furthermore, due to its small scale and its ties to the underlying convection, it is very difficult to forecast. Guidelines for out-of-cloud CIT avoidance are available, but they are oversimplified and can be misleading. In the search for more appropriate and physically based avoidance guidelines, considerable research has been conducted in recent years on the nature of the phenomenon, and in particular, its connection to gravity waves generated by the convection. This paper reviews the advances in our understanding of out-of-cloud CIT and its relation to convective gravity waves, and provides several detailed examples of observed cases to elucidate some of the underlying dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abarbanel, H. D. I., Holm, D. D., Marsden, J. E., & Ratiu, T. (1984). Richardson number criterion for the nonlinear stability of three-dimensional stratified flow. Physical Review Letters, 52, 2352–2355.

    Google Scholar 

  • Ahmad, N. N., & Proctor, F. (2011). Large eddy simulations of severe convection induced turbulence. AIAA-2011-3201. 3rd AIAA Atmospheric Space Environments Conference, Honolulu, HI.

  • Alexander, M. J., & Barnet, C. (2007). Using satellite observations to constrain parameterizations of gravity wave effects for global models. Journal of the Atmospheric Sciences, 64, 1652–1665.

    Google Scholar 

  • Alexander, M. J., Holton, J. R., & Durran, D. R. (1995). The gravity wave response above deep convection in a squall line simulation. Journal of the Atmospheric Sciences, 52, 2212–2226.

    Google Scholar 

  • Alexander, M. J., & Pfister, L. (1995). Gravity wave momentum flux in the lower stratosphere over convection. Journal of Geophysical Research, 22(15), 2029–2032.

    Google Scholar 

  • Ansong, J. K., & Sutherland, B. R. (2010). Internal gravity waves generated by convective plumes. Journal of Fluid Mechanics, 648, 405–434.

    Google Scholar 

  • Asai, T. (1970). Stability of a plane parallel flow with variable vertical shear and unstable stratification. Journal of the Meteorological Society of Japan, 48, 129–138.

    Google Scholar 

  • Augustine, J. A., & Zipser, E. J. (1987). The use of wind profilers in a mesoscale experiment. Bulletin of the American Meteorological Society, 68, 4–17.

    Google Scholar 

  • Baik, J.-J., & Chun, H.-Y. (1996). Effects of nonlinearity on the atmospheric flow response to low-level heating in a uniform flow. Journal of the Atmospheric Sciences, 53, 1856–1869.

    Google Scholar 

  • Baik, J. J., Hwang, H.-S., & Chun, H.-Y. (1999). Transient, linear dynamics of a stably stratified shear flow with thermal forcing and a critical level. Journal of the Atmospheric Sciences, 56, 483–499.

    Google Scholar 

  • Barber, K. A., Mullendore, G. L., & Alexander, M. J. (2018). Out-of-cloud convective turbulence: Estimation method and impacts of model resolution. Journal of Applied Meteorology and Climatology, 57, 121–136.

    Google Scholar 

  • Bedard, Jr. A. J. (1993). Atmospheric turbulence aloft: A review of possible methods for detection, warning, and validation of predictive models. 31st Aerospace Sciences Meeting & Exhibit, AIAA 93-0847, Reno, NV, January 11–14.

  • Bedka, K. M., Brunner, J., Dworak, R., Feltz, W., Otkin, J., & Greenwald, T. (2010). Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients. Journal of Applied Meteorology and Climatolology, 49(2), 181–202. https://doi.org/10.1175/2009JAMC2286.1.

    Google Scholar 

  • Beres, J. H. (2004). Gravity wave generation by a three-dimensional thermal forcing. Journal of the Atmospheric Sciences, 61, 1805–1815.

    Google Scholar 

  • Beres, J. H., Alexander, M. J., & Holton, J. R. (2002). Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. Journal of the Atmospheric Sciences, 59, 1805–1824.

    Google Scholar 

  • Beres, J. H., Alexander, M. J., & Holton, J. R. (2004). A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. Journal of the Atmospheric Sciences, 61, 324–337.

    Google Scholar 

  • Bernardet, L. R., Grasso, L. D., Nachamkin, J. E., Finley, C. A., & Cotton, W. R. (2000). Simulating convective events using a high-resolution mesoscale model. Journal of Geophysical Research: Atmospheres, 105(D11), 14963–14982. https://doi.org/10.1029/2000jd900100.

    Google Scholar 

  • Bradbury, T. A. M. (1973). Glider flight in the lower stratosphere above cumulonimbus clouds. Meteorological Magazine, 102, 110–120.

    Google Scholar 

  • Bretherton, F. P. (1966). The propagation of groups of internal gravity waves in shear flow. Quarterly Journal of the Royal Meteorological Society, 92, 466–480.

    Google Scholar 

  • Bretherton, C. (1988). Group velocity and the linear response of stratified fluids to internal heat or mass sources. Journal of the Atmospheric Sciences, 45, 81–93.

    Google Scholar 

  • Bretherton, C. S., & Smolarkiewicz, P. K. (1989). Gravity waves, compensating subsidence and detrainment around cumulus clouds. Journal of the Atmospheric Sciences, 46(6), 740–759.

    Google Scholar 

  • Broad, A. S. (1995). Linear theory of momentum fluxes in 3-d flows with turning of the mean wind with height. Quarterly Journal of the Royal Meteorological Society, 121, 1891–1902.

    Google Scholar 

  • Bruning, E. C., & MacGorman, D. R. (2013). Theory and observations of controls on lightning flash size spectra. Journal of the Atmospheric Sciences, 70, 4012–4029.

    Google Scholar 

  • Bryan, G. H., Wyngaard, J. C., & Fritsch, J. M. (2003). Resolution requirements for the simulation of deep, moist convection. Monthly Weather Review, 131, 2394–2416.

    Google Scholar 

  • Burnham, J. (1970). Atmospheric gusts—A review of the results of some recent research at the Royal Aircraft Establishment. Monthly Weather Review, 98(10), 723–734.

    Google Scholar 

  • Burns, A., Harrold, T. W., Burnham, J., & Spavins, C. S. (1966). Turbulence in clear air near thunderstorms. National Severe Storms Laboratory Technical Memorandum No. 30, 20 pp.

  • Cerasoli, C. P. (1978). Experiments on buoyant-parcel motion and the generation of internal gravity waves. Journal of Fluid Mechanics, 86(2), 247–271.

    Google Scholar 

  • Chun, H.-Y. (1997). Weakly non-linear response of a stably stratified shear flow to thermal forcing. Tellus, 49A, 528–543.

    Google Scholar 

  • Chun, H.-Y., & Baik, J.-J. (1994). Weakly non-linear response of a stably stratified atmosphere to diabatic forcing in a uniform flow. Journal of the Atmospheric Sciences, 41, 3109–3121.

    Google Scholar 

  • Chun, H.-Y., & Baik, J.-J. (1998). Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. Journal of the Atmospheric Sciences, 55, 3299–3310.

    Google Scholar 

  • Chun, H.-Y., & Baik, J.-J. (2002). An updated parameterization of convectively forced gravity wave drag for use in large-scale models. Journal of the Atmospheric Sciences, 59, 1006–1017.

    Google Scholar 

  • Chun, H.-Y., & Kim, Y.-H. (2008). Secondary waves generated by breaking of convective gravity waves in the mesosphere and their influence in the wave momentum flux. Journal of Geophysical Research, 113, D23107. https://doi.org/10.1029/2008JD009792.

    Google Scholar 

  • Clark, T. L., Hauf, T., & Kuettner, J. P. (1986). Convectively forced internal gravity waves: results from two-dimensional numerical experiments. Quarterly Journal of the Royal Meteorological Society, 112, 899–925.

    Google Scholar 

  • Collander, R., Jamison, B. D., Tollerud, E. I., Caracena, F., Lu, C., & Koch, S. E. (2006). Turbulence in MCS anvils: Observations and analyses from BAMEX. Preprints, 12th Conference on Aviation, Range, and Aerospace Meteorology, Atlanta, Georgia, American Meteorological Society, p. 7.1. Available online at http://ams.confex.com/ams/pdfpapers.104929.pdf.

  • Cornman, L. B., & Carmichael, B. (1993). Varied research efforts are under way to find means of avoiding air turbulence. ICAO Journal, 48, 10–15.

    Google Scholar 

  • Cornman, L. B., Morse, C. S., & Cunning, G. (1995). Real-time estimation of atmospheric turbulence severity from in situ aircraft measurements. Journal of Aircraft, 32, 171–177. https://doi.org/10.2514/3.46697.

    Google Scholar 

  • Bedard, A. J. Jr., & Cunningham, W. (1991). Potential aircraft hazards in the vicinity of convective clouds: A review from the perspective of a scale-model study. Preprints, 4th Conference on Aviation Weather Systems (pp. 66–70), Paris, FR, American Meteorological Society.

  • Deardorff, J. W. (1969). Numerical study of heat transport by internal gravity waves above a growing unstable layer. Physics of Fluids, 12(12), II-184. https://doi.org/10.1063/1.1692435.

    Google Scholar 

  • Deardorff, J. W., Willis, G. E., & Lilly, D. K. (1969). Laboratory investigation of non-steady penetrative convection. Journal of Fluid Mechanics, 35(1), 7–31.

    Google Scholar 

  • Deierling, W., & Williams, J. (2016). Relations between lightning and convective turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 179–192). Switzerland: Springer.

    Google Scholar 

  • Del Genio, A. D., Yao, M.-S., & Jonas, J. (2007). Will moist convection be stronger in a warmer climate? Geophysical Research Letters, 34, L16703. https://doi.org/10.1029/2007GL030525.

    Google Scholar 

  • Diffenbaugh, N. S., Scherer, M., & Trapp, R. J. (2013). Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proceedings of the National academy of Sciences of the United States of America, 110(41), 16361–16366. https://doi.org/10.1073/pnas.1307758110.

    Google Scholar 

  • Dixon, R. S., Browning, K. A., & Shutts, G. J. (2000). The mystery of striated cloud heads in satellite imagery. Atmospheric Science Letters, 1, 1–13. https://doi.org/10.1006/asle.2000.0001.

    Google Scholar 

  • Dörnbrack, A., Gerz, T., & Schumann, U. (1995). Turbulence breaking of overturning gravity waves below a critical level. Applied Scientific Research, 54, 163–176.

    Google Scholar 

  • Droegemeier, K.K., Richardson, Y., Bassett, G. M., & Marroquin, A. (1997). Three-dimensional numerical simulations of turbulence generated in the near-environment of deep convective storms. Preprints, 7th Conference on Aviation, Range, and Aerospace Meteorology, 2–7 February, Long Beach, CA, American Meteorological Society, 169–174.

  • Duran, P., & Molinari, J. (2016). Upper-tropospheric low Richardson number in tropical cyclones: Sensitivity to tropical cyclone intensity and the diurnal cycle. Journal of the Atmospheric Sciences, 73, 545–554.

    Google Scholar 

  • Durran, D. R., & Klemp, J. B. (1982). On the effects of moisture on the Brunt–Väisälä frequency. Journal of the Atmospheric Sciences, 39, 2152–2158.

    Google Scholar 

  • Einaudi, F., Lalas, D. P., & Perona, G. E. (1978). The role of gravity waves in tropospheric processes. Pure and Applied Geophysics, 117(4), 627–663. https://doi.org/10.1007/BF00879972.

    Google Scholar 

  • Eliassen, A., & Palm, E. (1961). On the transfer of energy in stationary mountain waves. Geofysiske Publikasjoner, 22(3), 1–23.

    Google Scholar 

  • Ellrod, G. P. (1985). Detection of high level turbulence using satellite imagery and upper air data. NOAA Technical Memorandum. NESDIS 10, 30 pp.

  • Ellrod, G. P., Knox, J. A., Lester, P. F., & Ehernberger, L. J. (2015). Clear air turbulence. In G. R. North., J. Curry., J. Pyle., & F. Zhang (Eds.), Encyclopedia of Atmospheric Sciences (2nd edn, Vol. 1, pp. 177–186). Amsterdam: Academic Press, Elsevier Science Ltd.

  • Eom, J. K. (1975). Analysis of the internal gravity wave occurence 3 of 19 April 1970 in the Midwest. Monthly Weather Review, 103, 217–226.

    Google Scholar 

  • Federal Aviation Administration (FAA) (2014). Aeronautical Information Manual (AIM). Available online at http://www.faa.gov/air_traffic/publications/media/AIM_Basic_4-03-14.pdf.

  • Fovell, R., Durran, D., & Holton, J. R. (1992). Numerical simulation of convectively generated stratospheric gravity waves. Journal of the Atmospheric Sciences, 49, 1427–1442.

    Google Scholar 

  • Fovell, R. G., Sharman, R. D., & Trier, S. B. (2007). A case study of convectively-induced clear-air turbulence. Preprints, 12th Conference on Mesoscale Processes, American Meteorological Society. Waterville Valley, New Hampshire, Paper 13.4.

  • Fric, T. F., & Roshko, A. (1994). Vortical structure in the wake of a transverse jet. Journal of Fluid Mechanics, 279, 1–47.

    Google Scholar 

  • Fritsch, J. M., & Maddox, R. A. (1981). Convectively driven mesoscale weather systems aloft. Part I: observations. Journal of Applied Meteorology, 20, 9–19.

    Google Scholar 

  • Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1), 1003. https://doi.org/10.1029/2001RG000106.

    Google Scholar 

  • Gavrilov, N. M., & Kshevetskii, S. P. (2015). Dynamical and thermal effects of nonsteady nonlinear acoustic-gravity waves propagating from tropospheric sources to the upper atmosphere. Advances in Space Research, 56, 1833–1843.

    Google Scholar 

  • Geller, M. A., & Gong, J. (2010). Gravity wave kinetic, potential and vertical fluctuation energies as indicators of different frequency gravity waves. Journal of Geophysical Research, 115, D11111. https://doi.org/10.1029/2009JD012266.

    Google Scholar 

  • Gensini, V. A., Ramseyer, C., & Mote, T. L. (2014). Future convective environments using NARCCAP. International Journal of Climatology, 34, 1699–1705.

    Google Scholar 

  • Gill, A. E. (1982). Atmosphere-ocean dynamics (p. 662). San Diego: Academic Press.

    Google Scholar 

  • Gill, P. G. (2016). Aviation turbulence forecast verification. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 261–283). Berlin: Springer.

    Google Scholar 

  • Gong, J., & Geller, M. A. (2010). Vertical fluctuation energy in United States high vertical resolution radiosonde data as an indicator of convective gravity wave sources. Journal of Geophysical Research, 115, D11110. https://doi.org/10.1029/2009JD012265.

    Google Scholar 

  • Gossard, E. E., & Hooke, W. H. (1975). Waves in the atmosphere. New York: Elsevier.

    Google Scholar 

  • Grabowski, W. W., & Clark, T. L. (1991). Cloud-environment interface instability: Rising thermal calculations in two spatial dimensions. Journal of the Atmospheric Sciences, 48, 527–546.

    Google Scholar 

  • Grachev, A. I., Lobachevskiy, L. A., Matveyev, L. K., Mordukhovich, M. I., & Sergeyenko, O. S. (1984). Thick convective cloud cover as a source of internal waves in the troposphere and ionosphere. Izvestiya, Atmospheric and Oceanic Physics, 20(2), 127–129.

    Google Scholar 

  • Guarino, M.-V., Teixeira, M. A. C., Keller, T. L., & Sharman, R. D. (2017). Mountain wave turbulence in the presence of directional wind shear over the Rocky Mountains. Journal of the Atmospheric Sciences. https://doi.org/10.1175/JAS-D-17-0128.1.

    Google Scholar 

  • Gultepe, I., & Starr, D. O'C. (1995).  Dynamical structure and turbulence in cirrus clouds: Aircraft observations during FIRE. Journal of the Atmospheric Sciences, 52(23), 4159–4182.

    Google Scholar 

  • Gultepe, I., et al. (2018). A review of high impact weather on aviation meteorology applications. Pure and Applied Geophysics, this issue.

  • Haman, K. (1962). On some possible causes of clear air turbulence. Acta Geophysica Polonica, 10, 335–357.

    Google Scholar 

  • Hamilton, D. W., & Proctor, F. H. (2003). An aircraft encounter with turbulence in the vicinity of a thunderstorm. 21st Applied Aerodynamics Conference, 23–26 June 2003, Orlando, Florida, AIAA 2003-4075.

  • Hansen, A. R., Nastrom, G. D., Otkin, J. A., & Eaton, F. D. (2002). MST radar observations of gravity waves and turbulence near thunderstorms. Journal of Applied Meteorology, 41, 298–305.

    Google Scholar 

  • Harris, F. I. (1977). The effects of evaporation at the base of ice precipitation layers: Theory and radar observations. Journal of the Atmospheric Sciences, 34, 651–672.

    Google Scholar 

  • Hertenstein, R. F. A., & Schubert, W. H. (1991). Potential vorticity anomalies associated with squall lines. Monthly Weather Review, 119, 1663–1672.

    Google Scholar 

  • Heymsfield, A. (1975). Cirrus uncinus generating cells and the evolution of cirriform clouds. Part II: The structure and circulations of the cirrus uncinus generating head. Journal of the Atmospheric Sciences, 32, 809–819.

    Google Scholar 

  • Hodges, R. R., Jr. (1967). Generation of turbulence in the upper atmosphere by internal gravity waves. Journal of Geophysical Research, 72, 3455–3458.

    Google Scholar 

  • Hoffmann, L., & Alexander, M. J. (2010). Occurrence frequency of convective gravity waves during the North American thunderstorm season. Journal of Geophysical Research, 115, D20111. https://doi.org/10.1029/2010JD014401.

    Google Scholar 

  • Holton, J. R., & Alexander, M. J. (1999). Gravity waves in the mesosphere generated by tropospheric convection. Tellus A-B, 51, 45–58.

    Google Scholar 

  • Homeyer, C. R., McAuliffe, J. D., & Bedka, K. M. (2017). On the development of above-anvil cirrus plumes in extratropical convection. Journal of the Atmospheric Sciences, 74, 1617–1633.

    Google Scholar 

  • Homeyer, C. R., Pan, L. L., & Barth, M. C. (2014). Transport from convective overshooting of the extratropical tropopause and the role of large-scale lower stratospheric stability. Journal of Geophysical Research, 119, 2220–2240. https://doi.org/10.1002/2013JD020931.

    Google Scholar 

  • Honomichl, S. B., Detwiler, A. G., & Smith, P. L. (2013). Observed hazards to aircraft in deep summertime convective clouds from 4–7 km. Journal of Aircraft, 50(3), 926–935. https://doi.org/10.2514/1.C032057.

    Google Scholar 

  • International Civil Aviation Organization (ICAO) (2013). Meteorological service for international air navigation.—Annex 3 to the Convention on International Civil Aviation, Appendix 4 Technical Specifications Related to Aircraft Observations and Reports, Section 2.6 Turbulence, 18th Edition, 208 pp. Available online at http://store1.icao.int/index.php/publications/annexes/3-meteorological-service-for-international-air-navigation.html.

  • Jones, W. L. (1967). Propagation of internal gravity waves in fluids with shear flow and rotation. Journal of Fluid Mechanics, 30, 481–496.

    Google Scholar 

  • Jones, T. B. (1982). Generation and propagation of acoustic gravity waves. Nature, 299, 488–489.

    Google Scholar 

  • Kang, M.-J., Chun, H.-Y., & Kim, Y.-H. (2017). Momentum flux of convective gravity waves derived from an offline gravity wave parameterization. Part I: Spatiotemporal variations at source level. Journal of the Atmospheric Sciences, 74(10), 3167–3189. https://doi.org/10.1175/JAS-D-17-0053.1.

    Google Scholar 

  • Kaplan, M. L., Huffman, A. W., Lux, K. M., Cetola, J. D., Charney, J. J., Riordan, A. J., et al. (2005). Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 2: Hydrostatic mesoscale numerical simulations of supergradient flow and streamwise ageostrophic frontogenesis. Meteorology and Atmospheric Physics, 88, 153–173.

    Google Scholar 

  • Keller, T. L., Ehernberger, L. J., & Wurtele, M. G. (1983). Numerical simulation of the atmosphere during a CAT encounter. Preprints, Ninth Conference on Aerospace and Aeronautical Meteorology, Omaha, Nebraska, American Meteorological Society, 316–319.

  • Kennedy, P. J., & Shapiro, M. A. (1975). The energy budget in a clear-air turbulence zone as observed by aircraft. Monthly Weather Review, 103, 650–654.

    Google Scholar 

  • Kessinger, C., Megenhardt, D., Blackburn, G., Olivo, J., Lin, L., Hoang, V., et al. (2017). Displaying convective weather products on an electronic flight bag. Journal of Air Traffic Control, 59(3), 52–61.

    Google Scholar 

  • Kim, Y.-H., Bushell, A. C., Jackson, D. R., & Chun, H.-Y. (2013). Impacts of introducing a convective gravity-wave parameterization upon the QBO in the Met Office Unified Model. Geophysical Research Letters. https://doi.org/10.1002/grl.50353.

    Google Scholar 

  • Kim, J.-H., & Chun, H.-Y. (2011). Statistics and possible sources of aviation turbulence over South Korea. Journal of Applied Meteorology and Climatology, 50, 311–324.

    Google Scholar 

  • Kim, J.-H., & Chun, H.-Y. (2012). A numerical simulation of convectively induced turbulence above deep convection. Journal of Applied Meteorology and Climatology, 51, 1180–1200.

    Google Scholar 

  • Kim, J.-H., Chun, H.-Y., Sharman, R. D., & Trier, S. B. (2014). The role of vertical shear on aviation turbulence within cirrus bands of a simulated western Pacific cyclone. Monthly Weather Review, 142, 2794–2813.

    Google Scholar 

  • Kim, S.-H., Chun, H. Y., Sharman, R. D., & Trier, S. B. (2017). Develo** near-cloud aviation turbulence related to breaking of convective gravity waves. Proceedings of the Autumn Meeting of Korean Meteorological Society (KMS), 228–230.

  • Kim, Y.-J., Eckermann, S. D., & Chun, H.-Y. (2003). An overview of past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmosphere Ocean, 41, 65–98.

    Google Scholar 

  • Klostermeyer, & Rüster, R. (1980). Radar observation and model computation of a jet stream-generated Kelvin-Helmholtz instability. Journal of Geophysical Research, 85(C5), 2841–2846.

  • Knight, C. A., Miller, L. J., & Hall, W. D. (2004). Deep convection and “first echoes’ within anvil precipitation. Monthly Weather Review, 132, 1877–1890.

    Google Scholar 

  • Knox, J. A., Bachmeier, A. S., Carter, W. M., Tarantino, J. E., Paulik, L. C., Wilson, E. N., et al. (2010). Transverse cirrus bands in weather systems: A grand tour of an enduring enigma. Weather, 65, 35–41.

    Google Scholar 

  • Knox, J. A., Black, A. W., Rackley, J. A., Wilson, E. N., Grant, J. S., Phelps, S. P., et al. (2016). Automated turbulence forecasting strategies. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 243–260). Berlin: Springer.

    Google Scholar 

  • Koch, S. E., Jamison, B. D., Lu, C., Smith, T. L., Tollerud, E. I., Girz, C., et al. (2005). Turbulence and gravity waves in an upper-level front. Journal of the Atmospheric Sciences, 62, 3885–3908.

    Google Scholar 

  • Kudo, A. (2013). The generation of turbulence below midlevel cloud bases: The effect of cooling due to sublimation of snow. Journal of Applied Meteorology and Climatology, 52, 819–833.

    Google Scholar 

  • Kudo, A., Luce, H., Hashiguchi, H., & Wilson, R. (2015). Convective instability underneath midlevel clouds: Comparisons between numerical simulations and VHF radar observations. Journal of Applied Meteorology and Climatology, 54, 2217–2227.

    Google Scholar 

  • Kumar, K. K. (2007). VHF radar investigations on the role of mechanical oscillator effect in exciting convectively generated gravity waves. Geophysical Research Letters, 34, L01803. https://doi.org/10.1029/2006GL027404.

    Google Scholar 

  • Lafore, J. P., & Moncrieff, M. W. (1989). A numerical investigation of the organization and interaction of convective and stratiform regions of tropical squall lines. Journal of the Atmospheric Sciences, 46, 521–544.

    Google Scholar 

  • Lane, T. P. (2008). The vertical response to penetrative convection and the associated gravity-wave generation. Atmospheric Science Letters, 9, 103–110.

    Google Scholar 

  • Lane, T. P. (2016). Processes underlying near-cloud turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 317–334). Berlin: Springer.

    Google Scholar 

  • Lane, T. P., Doyle, J. D., Plougonven, R., Shapiro, M. A., & Sharman, R. D. (2004). Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream. Journal of the Atmospheric Sciences, 61, 2692–2706.

    Google Scholar 

  • Lane, T. P., & Knievel, J. C. (2005). Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. Journal of the Atmospheric Sciences, 62, 3408–3419.

    Google Scholar 

  • Lane, T. P., Reeder, M. J., & Clark, T. L. (2001). Numerical modeling of gravity wave generation by deep tropical convection. Journal of the Atmospheric Sciences, 58, 1249–1274.

    Google Scholar 

  • Lane, T. P., & Sharman, R. D. (2006). Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophysical Research Letters, 33, L23813. https://doi.org/10.1029/2006GL027988.

    Google Scholar 

  • Lane, T. P., & Sharman, R. D. (2008). Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. Journal of Applied Meteorology, 47, 2777–2796.

    Google Scholar 

  • Lane, T. P., & Sharman, R. D. (2014). Intensity of thunderstorm-generated turbulence. Geophysical Research Letters, 41, 2221–2227.

    Google Scholar 

  • Lane, T. P., Sharman, R. D., Clark, T. L., & Hsu, H.-M. (2003). An investigation of turbulence generation mechanisms above deep convection. Journal of the Atmospheric Sciences, 60, 1297–1321.

    Google Scholar 

  • Lane, T. P., Sharman, R. D., Trier, S. B., Fovell, R. G., & Williams, J. K. (2012). Recent advances in the understanding of near-cloud turbulence. Bulletin of the American Meteorological Society, 93(4), 499–515.

    Google Scholar 

  • Lemon, L. R. (1976). Wake vortex structure and aerodynamic origin in severe thunderstorms. Journal of the Atmospheric Sciences, 33, 678–685.

    Google Scholar 

  • LeMone, M. A. (1973). The structure and dynamics of horizontal roll vortices in the planetary boundary layer. Journal of the Atmospheric Sciences, 30, 1077–1091.

    Google Scholar 

  • Lenz, A., Bedka, K., Feltz, W., & Ackerman, S. (2009). Convectively-induced transverse band signatures in satellite imagery. Weather and Forecasting, 24(5), 1362–1373.

    Google Scholar 

  • Lester, P. F. (1993). Turbulence: A new perspective for pilots. Englewood: Jeppesen Sanderson Inc.

    Google Scholar 

  • Levizanni, V., & Setvak, M. (1996). Multispectral, high resolution satellite observations of plumes on top of convective storms. Journal of the Atmospheric Sciences, 53, 361–369.

    Google Scholar 

  • Lighthill, J. (1978). Waves in fluids (p. 504). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lilly, D. K. (1990). Numerical prediction of thunderstorms—Has its time come? Quarterly Journal of the Royal Meteorological Society, 116, 779–798.

    Google Scholar 

  • Lin, Y.-L. (1986). Calculation of airflow over an isolated heat source with application to the dynamics of V-shaped clouds. Journal of the Atmospheric Sciences, 43, 2736–2751.

    Google Scholar 

  • Lin, Y.-L. (1994a). Airflow over mesoscale heat sources. Part I: Responses in a uniform flow. Proceedings of the National Science Council, Republic of China. Part A, Applied Sciences, 18(1), 1–32.

  • Lin, Y.-L. (1994b). Airflow over mesoscale heat sources. Part II: Responses in a shear flow. Proceedings of the National Science Council, Republic of China. Part A, Applied Sciences, 18(2), 119–150.

  • Lin, Y.-L. (2007). Mesoscale dynamics (pp. 630). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lin, Y.-L., & Goff, R. C. (1988). A study of a mesoscale solitary wave in the atmosphere originating near a region of deep convection. Journal of the Atmospheric Sciences, 45, 2401–2415.

    Google Scholar 

  • Lin, Y.-L., & Li, S. (1988). Three-dimensional response of a shear flow to elevated heating. Journal of the Atmospheric Sciences, 45, 2987–3002.

    Google Scholar 

  • Lin, Y.-L., & Smith, R. B. (1986). The transient dynamics of airflow near a local heat source. Journal of the Atmospheric Sciences, 43, 40–49.

    Google Scholar 

  • Lindzen, R. S., & Tung, K. K. (1976). Banded convective activity and ducted gravity waves. Monthly Weather Review, 104, 1602–1617.

    Google Scholar 

  • Lu, D., VanZandt, T. E., & Clark, W. L. (1984). VHF Doppler radar observations of buoyancy waves associated with thunderstorms. Journal of the Atmospheric Sciences, 41(2), 272–282.

    Google Scholar 

  • Luce, H., Nakamura, T., Yamamoto, M. K., Yamamoto, M., & Fukao, S. (2010). MU radar and lidar observations of clear-air turbulence underneath cirrus. Monthly Weather Review, 138, 438–452.

    Google Scholar 

  • MacCready, P. (1964). Standardization of gustiness values from aircraft. Journal of Applied Meteorology, 3, 439–449. https://doi.org/10.1175/1520-0450(1964)003,0439:SOGVFA.2.0.CO;2.

    Google Scholar 

  • Mclaren, T., Pierce, A., Fohl, T., & Murphy, B. (1973). An investigation of internal gravity waves generated by a buoyantly rising fluid in a stratified medium. Journal of Fluid Mechanics, 57(2), 229–240. https://doi.org/10.1017/S0022112073001126.

    Google Scholar 

  • McNulty, R. P. (1995). Severe and convective weather: A Central Region forecasting challenge. Weather and Forecasting, 10, 187–202.

    Google Scholar 

  • Meneguz, E., Wells, H., & Turp, D. (2016). An automated system to quantify aircraft encounters with convectively induced turbulence over Europe and the Northeast Atlantic. Journal of Applied Meteorology and Climatology, 55, 1077–1089.

    Google Scholar 

  • Miles, J. (1986). Richardson’s criterion for the stability of stratified shear flow. Physics of Fluids, 29(10), 3470–3471.

    Google Scholar 

  • Molinari, J., Duran, P., & Vallaro, D. (2014). Low Richardson number in the tropical cyclone outflow layer. Journal of the Atmospheric Sciences, 71, 3164–3179.

    Google Scholar 

  • Monette, S. A., & Sieglaff, J. M. (2014). Probability of convectively induced turbulence associated with geostationary satellite–inferred cloud-top cooling. Journal of Applied Meteorology and Climatology, 53(2), 429–436.

    Google Scholar 

  • Moustaoui, M., Joseph, B., & Teitelbaum, H. (2004). Mixing layer formation near the tropopause due to gravity wave-critical level interactions in a cloud-resolving model. Journal of the Atmospheric Sciences, 61, 3112–3124.

    Google Scholar 

  • Muhlbauer, A., Kalesse, H., & Kollias, P. (2014). Vertical velocities and turbulence in midlatitude anvil cirrus: A comparison between in situ aircraft measurements and ground-based Doppler cloud radar retrievals. Geophysical Research Letters, 41, 7814–7821. https://doi.org/10.1002/2014GLO62279.

    Google Scholar 

  • Nappo, C. J. (2002). An introduction to atmospheric gravity waves (p. 276). San Diego: Academic Press.

    Google Scholar 

  • Nicholls, M. E., Pielke, R. A., & Cotton, W. R. (1991). Thermally forced gravity waves in an atmosphere at rest. Journal of the Atmospheric Sciences, 48(16), 1869–1884.

    Google Scholar 

  • Pandya, R. E., & Alexander, M. J. (1999). Linear stratospheric gravity waves above convective thermal forcing. Journal of the Atmospheric Sciences, 56, 2434–2446.

    Google Scholar 

  • Pandya, R. E., & Durran, D. R. (1996). The influence of convectively generated thermal forcing in the mesoscale circulation around squall lines. Journal of the Atmospheric Sciences, 53, 2924–2951.

    Google Scholar 

  • Pandya, R., Durran, D., & Bretherton, C. (1993). Comments on “Thermally forced gravity waves in an atmosphere at rest”. Journal of the Atmospheric Sciences, 50(24), 4097–4101.

    Google Scholar 

  • Pantley, K. C., & Lester, P. F. (1990). Observations of severe turbulence near thunderstorm tops. Journal of Applied Meteorology, 29, 1171–1179.

    Google Scholar 

  • Parks, E. K., Wingrove, R. C., Bach, R. E., & Mehta, R. S. (1985). Identification of vortex-induced clear air turbulence using airline flight records. Journal of Aircraft, 22(2), 124–129. https://doi.org/10.2514/3.45095.

    Google Scholar 

  • Pavelin, E., Whiteway, J. A., & Vaughan, G. (2001). Observations of gravity wave generation and breaking in the lowermost stratosphere. Journal of Geophysical Research, 106, 5173–5179.

    Google Scholar 

  • Pearson, J. M., & Sharman, R. D. (2017). Prediction of energy dissipation rates for aviation turbulence: Part I. Nowcasting convective and non-convective turbulence. Journal of Applied Meteorology and Climatology, 56(2), 339–351. https://doi.org/10.1175/JAMC-D-16-0312.1.

    Google Scholar 

  • Petre, J. M., & Verlinde, J. (2004). Cloud radar observations of Kelvin–Helmholtz instability in a Florida anvil. Monthly Weather Review, 132, 2520–2523.

    Google Scholar 

  • Piani, C., Durran, D., Alexander, M. J., & Holton, J. R. (2000). A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. Journal of the Atmospheric Sciences, 57(22), 3689–3702.

    Google Scholar 

  • Pierce, A. D., & Coroniti, S. C. (1966). A mechanism for the generation of acoustic gravity waves during thunderstorm formation. Nature, 18, 1209–1210.

    Google Scholar 

  • Pinçon, C., Belkacem, K., & Goupil, M. J. (2016). Generation of internal gravity waves by penetrative convection. Astronomy and Astrophysics, A122, 1-21, https://doi.org/10.1051/0004-6361/201527663.

  • Plougonven, R., Teitelbaum, H., & Zeitlen, V. (2003). Inertia-gravity waves generation by the tropospheric mid-latitude jet as given by the FASTEX radiosoundings. Journal of Geophysical Research, 108, 4686. https://doi.org/10.1029/2003JD003535.

    Google Scholar 

  • Plougonven, R., & Zhang, F. (2016). Gravity waves generated by jets and fronts and their relevance for clear-air turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 385–406). Berlin: Springer.

    Google Scholar 

  • Pond, S. R. (2015). Analysis of aircraft flights near convective weather over Europe. Weather, 70(10), 292–296.

    Google Scholar 

  • Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., Holland, G. J., et al. (2017). Increased rainfall volume from future convective storms in the US. Nature Climate Change, 7, 880–884.

    Google Scholar 

  • Prophet, D. T. (1970). Vertical extent of turbulence in clear air above the tops of thunderstorms. Journal of Applied Meteorology, 9, 320–321.

    Google Scholar 

  • Queney, P. (1948). The problem of airflow over mountains. A summary of theoretical studies. Bulletin of the American Meteorological Society, 29, 16–26.

    Google Scholar 

  • Reiter, E. R., & Lester, P. F. (1968). Richardson’s Number in the free atmosphere. Arch. Met. Geoph. Biokl. A, 17, 1–7.

    Google Scholar 

  • Romanova, N. N., & Yakushkin, I. G. (1995). Internal gravity waves in the lower atmosphere and sources of their generation (review). Izvestiya, Atmospheric and Oceanic Physics, 31(2), 151–172.

    Google Scholar 

  • Romps, D. M., Seeley, J. T., Vollaro, D., & Molinari, J. (2014). Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851–853.

    Google Scholar 

  • Ruppert, J. H., Jr., & Bosart, L. F. (2014). A case study of the interaction of a mesoscale gravity wave with a mesoscale convective system. Monthly Weather Review, 142, 1403–1429.

    Google Scholar 

  • Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P., & Van Meijgaard, E. (2015). Weather forecasting using GPU-based large-eddy simulations. Bulletin of the American Meteorological Society, 96, 715–723. https://doi.org/10.1175/BAMS-D-14-00114.1.

    Google Scholar 

  • Schultz, D. M., Kanak, K. M., Straka, J. M., Trapp, R. J., Gordon, B. A., Zrnic, D. R., et al. (2006). The mysteries of mammatus clouds: Observations and formation mechanisms. Journal of the Atmospheric Sciences, 63, 2409–2435.

    Google Scholar 

  • Schwartz, B. (1996). The quantitative use of PIREPs in develo** aviation weather guidance products. Weather and Forecasting, 11, 372–384. https://doi.org/10.1175/1520-434(1996)011,0372:TQUOPI.2.0.CO;2.

    Google Scholar 

  • Shapiro, M. A. (1976). The role of turbulent heat flux in the generation of potential vorticity in the vicinity of upper-level jet stream systems. Monthly Weather Review, 104(7), 892–906

    Google Scholar 

  • Sharman, R. (2016). Nature of aviation turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 3–30). Berlin: Springer.

    Google Scholar 

  • Sharman, R. D., Cornman, L. B., Meymaris, G., Pearson, J., & Farrar, T. (2014). Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. Journal of Applied Meteorology and Climatology, 53(6), 1416–1432. https://doi.org/10.1175/JAMC-D-13-0329.1.

    Google Scholar 

  • Sharman, R., Lane, T., & Schumann, U. (2016). Research needs. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 501–508). Berlin: Springer.

    Google Scholar 

  • Sharman, R. D., & Pearson, J. M. (2017). Prediction of energy dissipation rates for aviation turbulence: Part I. Forecasting Non-convective turbulence. Journal of Applied Meteorology and Climatology, 56(2), 317–337. https://doi.org/10.1175/JAMC-D-16-0205.1.

    Google Scholar 

  • Sharman, R. D., Trier, S. B., Lane, T. P., & Doyle, J. D. (2012). Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophysical Research Letters, 39, L12803. https://doi.org/10.1029/2012GL051996.

    Google Scholar 

  • Sharman, R. D., & Wurtele, M. G. (1983). Ship waves and lee waves. Journal of the Atmospheric Sciences, 40, 396–427.

    Google Scholar 

  • Sharman, R. D., & Wurtele, M. G. (2004). Three-dimensional structure of forced gravity waves and lee waves. Journal of the Atmospheric Sciences, 61, 664–680.

    Google Scholar 

  • Shutts, G. J. (1998). Stationary gravity-wave structure in flows with directional wind shear. Quarterly Journal of the Royal Meteorological Society, 124, 1421–1442.

    Google Scholar 

  • Smull, B. F., & Houze, R. A., Jr. (1987). Rear inflow in squall lines with trailing stratiform precipitation. Monthly Weather Review, 115, 2869–2889.

    Google Scholar 

  • Snively, J. B., & Pasko, V. P. (2003). Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophysical Research Letters, 30(24), 2254. https://doi.org/10.1029/2003GL018436.

    Google Scholar 

  • Song, I.-S., Chun, H.-Y., & Lane, T. P. (2003). Generation mechanisms of convectively forced internal gravity waves and their propagation into the stratosphere. Journal of the Atmospheric Sciences, 60, 1960–1980.

    Google Scholar 

  • Stephan, C., & Alexander, M. J. (2015). Realistic simulations of atmospheric gravity waves over the continental U.S. using precipitation radar data. Journal of Advances in Modeling Earth Systems, 7, 823–835. https://doi.org/10.1002/2014MS000396.

    Google Scholar 

  • Stobie, J. G., Einaudi, F., & Uccellini, L. W. (1983). A case study of gravity waves—convective storms interaction: 9 May 1979. Journal of Atmospheric Science, 40(12), 2804–2830.

    Google Scholar 

  • Storer, L. N., Williams, P. D., & Joshi, M. M. (2017). Global response of clear-air turbulence to climate change. Geophysical Research Letters. https://doi.org/10.1002/2017GL074618.

    Google Scholar 

  • Stull, R. B. (1976). Internal gravity waves generated by penetrative convection. Journal of the Atmospheric Sciences, 33, 1279–1286.

    Google Scholar 

  • Teitelbaum, H., Moustaoui, M., Sadourny, R., & Lott, F. (1999). Critical levels and mixing layers induced by convectively generated gravity waves during CEPEX. Quarterly Journal of the Royal Meteorological Society, 125, 1715–1734.

    Google Scholar 

  • Townsend, A. A. (1966). Internal waves produced by a convective layer. Journal of Fluid Mechanics, 24(2), 307–319.

    Google Scholar 

  • Townsend, A. A. (1968). Excitation of internal waves in a stably-stratified atmosphere with considerable wind-shear. Journal of Fluid Mechanics, 32(1), 3145–3171.

    Google Scholar 

  • Trapp, R. J., Diffenbaugh, N. S., Brooks, H. E., Baldwin, M. E., Robinson, E. D., & Pal, J. S. (2007). Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proceedings of the National academy of Sciences of the United States of America, 104(50), 19719–19723.

    Google Scholar 

  • Trier, S. B. (2016). Modeling studies of turbulence mechanisms associated with mesoscale convective systems. In Sharman R., Lane. T. (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 335-356). Berlin: Springer.

  • Trier, S. B., & Sharman, R. D. (2009). Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Monthly Weather Review, 137, 1972–1990.

    Google Scholar 

  • Trier, S. B., & Sharman, R. D. (2016). Mechanisms influencing cirrus banding and aviation turbulence near a convectively enhanced upper-level jet stream. Monthly Weather Review, 144, 3003–3027.

    Google Scholar 

  • Trier, S. B., Sharman, R. D., Fovell, R. G., & Frehlich, R. G. (2010). Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system. Journal of the Atmospheric Sciences, 67, 2990–2999.

    Google Scholar 

  • Trier, S. B., Sharman, R. D., & Lane, T. P. (2012). Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Monthly Weather Review, 140, 2477–2496.

    Google Scholar 

  • Turner, J. S. (1973). Buoyancy effects in fluids. Cambridge: Cambridge University Press, 367 pp.

    Google Scholar 

  • Uccellini, L. W., & Koch, S. E. (1987). The synoptic setting and possible energy sources for mesoscale wave disturbances. Monthly Weather Review, 115, 721–729.

    Google Scholar 

  • Verrelle, A., Richard, D., & Lac, C. (2017). Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale resolution. Monthly Weather Review, 145, 3947–3967.

    Google Scholar 

  • Wakimoto, R. M., & Murphey, H. V. (2009). Analysis of a dryline during IHOP: Implications for convection initiation. Monthly Weather Review, 137, 912–936.

    Google Scholar 

  • Wang, P. K. (2003). Moisture plumes above thunderstorm anvils and their contributions to cross tropopause transport of water vapor in midlatitudes. Journal of Geophysical Research, 108(D6), 4194. https://doi.org/10.1029/2003JD002581.

    Google Scholar 

  • Wang, P. K. (2007). The thermodynamic structure atop a penetrating convective thunderstorm. Atmospheric Research, 83, 254–262.

    Google Scholar 

  • Wang, P. K., Su, S.-H., Setvak, M., Lin, H., & Rabin, R. M. (2010). Ship wave signature at the cloud top of deep convective storms. Atmospheric Research, 97, 294–302.

    Google Scholar 

  • Wei, J., & Zhang, F. (2014). Mesoscale gravity waves in moist baroclinic jet-front systems. Journal of the Atmospheric Sciences, 71, 929–952.

    Google Scholar 

  • Weisman, M. L. (1992). The role of convectively generated rear-inflow jets in the evolution of long-lived mesoscale convective systems. Journal of the Atmospheric Sciences, 49, 1826–1847.

    Google Scholar 

  • Weisman, M. L., Davis, C., Wang, W., Manning, K. W., & Klemp, J. B. (2008). Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Weather and Forecasting, 23, 407–437.

    Google Scholar 

  • Williams, J. K. (2014). Using random forests to diagnose aviation turbulence. Machine Learning, 95, 51–70. https://doi.org/10.1007/s10994-013-5346-7.

    Google Scholar 

  • Williams, P. D. (2017). Increased light, moderate, and severe clear-air turbulence in response to climate change. Advances in Atmospheric Sciences, 34(5), 576–586.

    Google Scholar 

  • Williams, P. D., & Joshi, M. M. (2013). Intensification of winter transatlantic aviation turbulence in response to climate change. Nature Climate Change, 3, 644–648.

    Google Scholar 

  • Williams, P. D., & Joshi, M. M. (2016). Clear-air turbulence in a changing climate. In Sharman R., Lane. T. (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 465–480). Berlin: Springer.

  • Williams, J. K., & Meymaris, G. (2016). Remote turbulence detection using ground-based Doppler radar. Aviation turbulence forecast verification. In Sharman R., Lane. T. (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 335–356). Berlin: Springer.

  • Wimmers, A., Griffin, S., Gerth, J., Bachmeier, S., & Lindstrom, S. (2018). Observations of gravity waves with high-pass filtering in the new generation of geostationary imagers and their relation to turbulence. Weather and Forecasting, 33, 139–144.

    Google Scholar 

  • Wolff, J. K., & Sharman, R. D. (2008). Climatology of upper-level turbulence over the continental Unites States. Journal of Applied Meteorology and Climatology, 47(8), 2198–2214. https://doi.org/10.1175/2008JAMC1799.1.

    Google Scholar 

  • Wurtele, M. G., Datta, A., & Sharman, R. D. (1996). The propagation of gravity-inertia waves and lee waves under a critical level. Journal of the Atmospheric Sciences, 53(11), 1505–1523.

    Google Scholar 

  • Zhang, F. (2004). Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. Journal of the Atmospheric Sciences, 61, 440–457.

    Google Scholar 

  • Zhou, X., Holton, J. R., & Mullendore, G. L. (2002). Forcing of secondary waves by breaking of gravity waves in the mesosphere. Journal of Geophysical Research, 107(D7), 4058. https://doi.org/10.1029/2001JD001204.

    Google Scholar 

  • Zovko-Rajak, D., & Lane, T. P. (2014). The generation of near-cloud turbulence in idealized simulations. Journal of the Atmospheric Sciences, 71, 2430–2451.

    Google Scholar 

Download references

Acknowledgements

We thank Wiebke Deierling, Teddie Keller (each of NCAR), Gretchen Mullendore (University of North Dakota), and an anonymous reviewer for their comments of an earlier version of the manuscript, which helped improve the presentation. We also thank Julia Pearson (NCAR) for constructing Fig. 1 and Lara Ziady (NCAR) for Fig. 2. We acknowledge Earth Networks for providing ENTLN (lightning) data. This research is in response to requirements and funding by the Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Sharman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharman, R.D., Trier, S.B. Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review. Pure Appl. Geophys. 176, 1923–1958 (2019). https://doi.org/10.1007/s00024-018-1849-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1849-2

Keywords

Navigation