Log in

A Comparison of Seismicity Characteristics and Fault Structure Between Stick–Slip Experiments and Nature

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Fault zones contain structural complexity on all scales. This complexity influences fault mechanics including the dynamics of large earthquakes as well as the spatial and temporal distribution of small seismic events. Incomplete earthquake records, unknown stresses, and unresolved fault structures within the crust complicate a quantitative assessment of the parameters that control factors affecting seismicity. To better understand the relationship between fault structure and seismicity, we examined dynamic faulting under controlled conditions in the laboratory by creating saw-cut-guided natural fractures in cylindrical granite samples. The resulting rough surfaces were triaxially loaded to produce a sequence of stick–slip events. During these experiments, we monitored stress, strain, and seismic activity. After the experiments, fault structures were imaged in thin sections and using computer tomography. The laboratory fault zones showed many structural characteristics observed in upper crustal faults, including zones of localized slip embedded in a layer of fault gouge. Laboratory faults also exhibited a several millimeter wide damage zone with decreasing micro-crack density at larger distances from the fault axis. In addition to the structural similarities, we also observed many similarities between our observed distribution of acoustic emissions (AEs) and natural seismicity. The AEs followed the Gutenberg–Richter and Omori–Utsu relationships commonly used to describe natural seismicity. Moreover, we observed a connection between along-strike fault heterogeneity and variations of the Gutenberg–Richter b value. As suggested by natural seismicity studies, areas of low b value marked the nucleation points of large slip events and were located at large asperities within the fault zone that were revealed by post-experimental tomography scans. Our results emphasize the importance of stick–slip experiments for the study of fault mechanics. The direct correlation of acoustic activity with fault zone structure is a unique characteristic of our laboratory studies that has been impossible to observe in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki, K. (1965), Maximum likelihood estimate of b in the formula log N = a − bM and its confidence limits, Bull. Earthquake Res. Inst., Tokyo Univ., 43, 237–239.

  • Aki, K. (1981), A probabilistic synthesis of precursory phenomena, in Earthquake Prediction: An International Review, Maurice Ewing Series, vol. 4, edited by D. W. Simpson and P. G. Richards, pp. 566–574, American Geophysical Union, Washington, D. C.

  • Amitrano, D. (2003), Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value, J. Geophys. Res., 108, 2044, doi:10.1029/2001JB000680.

  • Amitrano, D., and J. Schmittbuhl (2002), Fracture roughness and gouge distribution of a granite shear band, J. Geophys. Res, 107, 2375, doi:10.1029/2002JB001761.

  • Aydin, A., and A. M. Johnson (1983), Analysis of faulting in porous sandstones, J. Struct. Geol., 5(1), 19–31.

  • Bailey, I., Y. Ben-Zion, T. W. Becker, and M. Holschneider (2010), Quantifying focal mechanism heterogeneity for fault zones in central and southern California, Geophys. J. Int., 83, 433–450.

  • Barbot, S., N. Lapusta, and J.-P. Avouac (2012), Under the hood of the earthquake machine: T oward predictive modeling of the seismic cycle, Science, 336(6082), 707–710, doi:10.1126/science.1218796.

  • Ben-Zion, Y., and C. G. Sammis (2003), Characterization of F ault Z ones, Pure Appl. Geophys., 160, 677–715.

  • Bender, B. (1983), Maximum likelihood estimation of b values for magnitude grouped data, Bull. Seismol. Soc. Am., 73(3), 831–851.

  • Beroza, G. C., and M. D. Zoback (1993), Mechanism diversity of the Loma Prieta aftershocks and the mechanics of mainshock-aftershock interaction., Science, 259(5092), 210.

  • Brace, W. F., and J. D. Byerlee (1966), Stick–slip as a mechanism for earthquakes, Science, 153(3739), 990–992.

  • Byerlee, J. D. (1970), The mechanics of stick–slip, Tectonophys., 9(5), 475–486.

  • Caine, J. S., J. P. Evans, and C. B. Forster (1996), Fault zone architecture and permeability structure, Geology, 24(11), 1025–1028.

  • Californian Fault Traces (2010), Quaternary Fault and Fold Database for the United States, California Geological Survey & U.S. Geological Survey, http://earthquake.usgs.gov/regional/qfaults, (accessed February 17, 2012).

  • Chester, F. M., and J. M. Logan (1986), Implications for mechanical properties of brittle faults from observations of the P unchbowl fault zone, California, Pure Appl. Geophys., 124(1), 79–106.

  • Chester, F. M., J. P. Evans, and R. L. Biegel (1993), Internal structure and weakening mechanisms of the San Andreas Fault, J. Geophys. Res., 98 (B1), 771–786, doi:10.1029/92JB01866.

  • Dieterich, J. (1979), Modeling of rock friction 1. Experimental results and constitutive equations, J. Geophys. Res., 84(B5), 2161–2168.

  • Dieterich, J. H., and K. B. Richards-Dinger (2010), Earthquake recurrence in simulated fault systems, Seismogenesis and Earthquake Forecasting: The Frank Evison Volume II, 2, 233–250.

  • Dietrich, J. H. (1978), Time-dependent friction and mechanics of stick–slip, Pure Appl. Geophys., 116, 790–806.

  • Dor, O., Y. Ben-Zion, T. K. Rockwell, and J. Brune (2006), Pulverized rocks in the mojave section of the San Andreas Fault Zone, Earth and Planetary Science Letters, 245(3), 642–654.

  • Faulkner, D. R., A. C. Lewis, and E. H. Rutter (2003), On the internal structure and mechanics of large strike-slip fault zones: Field observations of the Carboneras fault in southeastern Spain, Tectonophysics, 367(3), 235–251.

  • Faulkner, D. R., T. M. Mitchell, E. H. Rutter, and J. Cembrano (2008), On the structure and mechanical properties of large strike-slip faults, Geological Society, London, Special Publications, 299(1), 139–150.

  • Faulkner, D. R., C. A. L. Jackson, R. J. Lunn, R. W. Schlische, Z. K. Shipton, C. A. J. Wibberley, and M. O. Withjack (2010), A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, Journal of Structural Geology, 32(11), 1557–1575, doi:10.1016/j.jsg.2010.06.009.

  • Faulkner, D. R., T. M. Mitchell, J. Behnsen, T. Hirose, and T. Shimamoto (2011), Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs, Geophys. Res. Lett., 38(18), L18,303.

  • Feder, J. (1988), Fractals, Plenum Press, New York.

  • Goebel, T. H. W., T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen (2012), Identifying fault hetergeneity through map** spatial anomalies in acoustic emission statistics, J. Geophys. Res., 117, B03310, doi:10.1029/2011JB008763.

  • Goebel, T. H. W., D. Schorlemmer, G. Dresen, T. W. Becker, and C. G. Sammis (2013), Acoustic emissions document stress changes over many seismic cycles in stick–slip experiments, Geophys. Res. Letts., 40, doi:10.1002/grl.50507.

  • Grassberger, P. (1983), Generalized dimensions of strange attractors, Physics Letters A, 97(6), 227–230.

  • Green, H., and C. Marone (2002), Instability of deformation, Reviews in mineralogy and geochemistry, 51(1), 181–199.

  • Guo, Z., and Y. Ogata (1997), Statistical relations between the parameters of aftershocks in time, space, and magnitude, J. Geophys. Res., 102(B2), 2857–2873.

  • Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185–188.

  • Hirata, T. (1989), A correlation between the b value and the fractal dimension of earthquakes, J. Geophys. Res., 94, 7507–7514.

  • Hirth, G., and J. Tullis (1989), The effects of pressure and porosity on the micromechanics of the brittle-ductile transition in Quartzite, J. Geophy. Res., 94(B12), 17,825–17.

  • Hori, T., N. Kato, K. Hirahara, T. Baba, and Y. Kaneda (2004), A numerical simulation of earthquake cycles along the Nankai Trough in southwest Japan: lateral variation in frictional property due to the slab geometry controls the nucleation position, Earth and Planetary Science Letters, 228(3), 215–226.

  • Ishimoto, M., and K. Iida (1939), Observations of earthquakes registered with the microseismograph constructed recently, Bull. Earthquake Res. Inst. Tokyo Univ., 17, 443–478.

  • Janssen, C., F. Wagner, A. Zang, and G. Dresen (2001), Fracture process zone in granite: a microstructural analysis, Int. J. Earth Sci., 90(1), 46–59.

  • Lei, X., O. Nishizawa, K. Kusunose, and T. Satoh (1992), Fractal structure of the hypocenter distributions and focal mechanism solutions of acoustic emission in two granites of different grain sizes, J. Phys. Earth, 40, 617–634.

  • Lockner, D., and J. Byerlee (1990), An example of slip instability resulting from displacement-varying strength, Pure Appl. Geophys., 133(2), 269–281.

  • Lockner, D., J. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1991a), Observations of quasistatic fault growth from acoustic emissions, Fault Mech. Transport Properties of Rocks, pp. 3–31.

  • Lockner, D., J. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1991b), Quasi-static, fault growth and shear fracture energy in granite, Nature, 350, 39–42.

  • Lockner, D. A., and N. M. Beeler (2002), 32 Rock failure and earthquakes, in International Handbook of Earthquake and Engineering Seismology, International Geophysics, vol. 81, Part A, edited by P. C. J. William H.K. Lee, Hiroo Kanamori and C. Kisslinger, pp. 505–537, Academic Press, doi:10.1016/S0074-6142(02)80235-2.

  • Lockner, D. A., and J. D. Byerlee (1995), Precursory AE patterns leading to rock fracture, in Proc. 5th Conf. on Acoustic Emission/Microseismic Activity in Geologic Structures and Materials, pp. 45–58.

  • Main, I. G., P. G. Meredith, and C. Jones (1989), A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics, Geoph. J. Int., 96, 131–138.

  • Main, I. G., P. G. Meredith, and P. R. Sammonds (1992), Temporal variations in seismic event rate and b-values from stress corrosion constitutive laws, Tectonophysics, 211, 233–246.

  • Mair, K., I. Main, and S. Elphick (2000), Sequential growth of deformation bands in the laboratory, J. Struct. Geol., 22(1), 25–42.

  • Malin, P. E., S. N. Blakeslee, M. G. Alvarez, and A. J. Martin (1989), Microearthquake imaging of the Parkfield asperity, Science, 244, 557–559.

  • Mandelbrot, B. (1982), The fractal geometry of nature, Freeman, New York.

  • Marone, C. (1998), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643–696.

  • Meijninger, B. M. L., and R. L. M. Vissers (2006), Miocene extensional basin development in the Betic Cordillera, SE Spain revealed through analysis of the alhama de murcia and crevillente faults, Basin Research, 18(4), 547–571.

  • Meijninger, B. M. L., and R. L. M. Vissers (2007), Thrust-related extension in the Prebetic (Southern Spain) and closure of the North Betic Strait, Revista de la Sociedad Geoló gica de España, 20(3–4), 153–171.

  • Mendoza, C., and S. H. Hartzell (1988), Aftershock patterns and main shock faulting, Bull. Seismol. Soc. Am., 78(4), 1438–1449.

  • Meredith, P. G., I. G. Main, and C. Jones (1990), Temporal variations in seismicity during quasi-static and dynamic rock failure, Tectonophysics, 175, 249–268.

  • Mitchell, T., and D. Faulkner (2009), The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile, Journal of Structural Geology, 31(8), 802–816, doi:10.1016/j.jsg.2009.05.002.

  • Mogi, K. (1962), Magnitude-frequency relations for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthquake Res. Inst. Univ. Tokyo, 40, 831–853.

  • Moore, D. E., and D. A. Lockner (2004), Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals, Journal of Geophysical Research: Solid Earth, 109(B3), doi:10.1029/2003JB002582.

  • Moore, D. E., and M. J. Rymer (2007), Talc-bearing serpentinite and the cree** section of the San Andreas fault, Nature, 448, 795–797, doi:10.1038/nature06064.

  • Nadeau, R. M., and T. V. McEvilly (1999), Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718–721.

  • Nadeau, W. F., R. M., and T. V. McEvilly (1995), Clustering and periodic recurrence of microearthquakes on the San Andreas Fault at Parkfield, California, Science, 267, 503–507.

  • Narteau, C., S. Byrdina, P. Shebalin, and D. Schorlemmer (2009), Common dependence on stress for the two fundamental laws of statistical seismology, Nature, 462, 642–645, doi:10.1038/nature08553.

  • Noda, H., and N. Lapusta (2013), Stable cree** fault segments can become destructive as a result of dynamic weakening, Nature, 493(7433), 518–521.

  • Ogata, Y. (1999), Seismicity analysis through point-process modeling:a review, pageoph, 155, 471–507.

  • Omori, F. (1894), On the aftershocks of earthquake, J. Coll. Sci. Imp. Univ. Tokyo, 7, 111–200.

  • Oppenheimer, D. (1990), Aftershock slip behavior of the 1989 Loma Prieta, California earthquake, Geophys. Res. Lett, 17(8), 1199–1202.

  • Powers, P. M., and T. H. Jordan (2010), Distribution of seismicity across strike-slip faults in California, J. Geophys. Res., 115, doi:10.1029/2008JB006234.

  • Reasenberg, P., and L. M. Jones (1989), Earthquake hazard after a mainshock in california, Science, 243(4895), 1173–1176.

  • Rundle, J. B., P. B. Rundle, A. Donnellan, and G. Fox (2004), Gutenberg-richter statistics in topologically realistic system-level earthquake stress-evolution simulations, Earth Planets and Space, 56(8), 761–772.

  • Savage, H. M., and E. E. Brodsky (2011), Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones, J. Geophys. Res., 116(B3), doi:10.1029/2010JB007665.

  • Scholz, C. (1998), Earthquakes and friction laws, Nature, 391(6662), 37–42.

  • Scholz, C. H. (1968), The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, Bull. Seismol. Soc. Am., 58, 399–415.

  • Schorlemmer, D., and S. Wiemer (2005), Microseismicity data forecast rupture area, Nature, 434, 1086, doi:10.1038/4341086a.

  • Schorlemmer, D., S. Wiemer, and M. Wyss (2005), Variations in earthquake-size distribution across different stress regimes, Nature, 437, 539–542, doi:10.1038/nature04094.

  • Schroeder, M. (1991), Fractals, chaos, power laws: Minutes from an infinite paradise, W. H. Freemann, New York.

  • Schulz, S. E., and J. P. Evans (2000), Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults, J. Struct. Geol., 22(7), 913–930.

  • Shcherbakov, R., D. L. Turcotte, and J. B. Rundle (2004), A generalized omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613, doi:10.1029/2004GL019808.

  • Smith, S. A. F., A. Bistacchi, T. Mitchell, S. Mittempergher, and G. Di Toro (2013), The structure of an exhumed intraplate seismogenic fault in crystalline basement, Tectonophysics, 599, 29–44.

  • Sobiesiak, M., U. Meyer, S. Schmidt, H.-J. Gotze, and C. M. Krawczyk (2007), Asperity generating upper crustal sources revealed by b-value and isostatic residual anomaly grids in the area of Antofagasta, Chile, J. Geophys. Res., 112, doi:10.1029/2006JB004796.

  • Stanchits, S., S. Vinciguerra, and G. Dresen (2006), Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite, Pure Appl. Geophys., 163, 975–994.

  • Stesky, R. M. (1978), Mechanisms of high temperature frictional sliding in Westerly granite, Can. J. Earth Sci., 15, 361–375.

  • Thompson, B. D., R. P. Young, and D. A. Lockner (2005), Observations of premonitory acoustic emission and slip nucleation during a stick slip experiment in smooth faulted westerly granite, Geophys. Res. Letts., 32, doi:10.1029/2005GL022750.

  • Thompson, B. D., R. P. Young, and D. A. Lockner (2009), Premonitory acoustic emissions and stick–slip in natural and smooth-faulted Westerly granite, J. Geophys. Res., 114, doi:10.1029/2008JB005753.

  • Utsu, T., Y. Ogata, and M. Ritsuko (1965), The centenary of Omori formula for a decay law of afterhock activity, Journal of Physics of the Earth, 43, 1–33.

  • Voisin, C., F. Renard, and J.-R. Grasso (2007), Long term friction: From stick–slip to stable sliding, Geophs. Res. Lett., 34, doi:10.1029/2007GL029715.

  • Ward, S. N. (2000), San Francisco bay area earthquake simulations: A step toward a standard physical earthquake model, Bull. Seismol. Soc. Am., 90(2), 370–386.

  • Weeks, J., D. Lockner, and J. Beyerlee (1978), Change in b-values during movement on cut surfaces in granite, Bull. Seismol. Soc. Am., 68, 333–341.

  • Wesnousky, S. G. (1988), Seismological and structural evolution of strike-slip faults, Nature, 335, 340–342.

  • Westerhaus, M., M. Wyss, R. Yilmaz, and J. Zschau (2002), Correlating variations of b-values and crustal deformations during the 1990s may have pinpointed the rupture initiation of the M w = 7.4 zmit earthquake of 1999 August 17, Geophys. J. Int., 184(1), 139–152.

  • Wibberley, C. A. J., G. Yielding, and G. Di Toro (2008), Recent advances in the understanding of fault zone internal structure: A review, Geological Society, London, Special Publications, 299(1), 5–33.

  • Wiemer, S., and K. Katsumata (1999), Spatial variability of seismicity parameters in aftershock zones, J. Geophys. Res., 104, 13,135–13,151.

  • Wiemer, S., and M. Wyss (1997), Map** the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times?, J. Geophys. Res., 102, 15,115–15,128.

  • Wiemer, S., and M. Wyss (2002), Map** spatial variability of the frequency-magnitude distribution of earthquakes, Advances in geophysics, 45, 259–V.

  • Woessner, J., E. Hauksson, S. Wiemer, and S. Neukomm (2004), The 1997 Kagoshima (Japan) earthquake doublet: A quantitative analysis of aftershock rate changes, Geophys. Res. Lett., 31, L03605, doi:10.1029/2003GL018858.

  • Woessner, J., D. Schorlemmer, S. Wiemer, and P. M. Mai (2006), Spatial correlation of aftershock locations and on-fault main shock properties, J. Geophys. Res., 111(B8), B08301, doi:10.1029/2005JB003961.

  • Wyss, M., and S. Matsumura (2002), Most likely locations of large earthquakes in the Kanto and Tokai areas, Japan, based on the local recurrence times, Physics of The Earth and Planetary Interiors, 131, 173–184.

  • Wyss, M., and R. Stefansson (2006), Nucleation points of recent mainshocks in southern Iceland, mapped by b-values, Bull. Seismol. Soc. Am., 96(2), 599–608.

  • Wyss, M., and S. Wiemer (2000), Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 earthquake, Science, 290, 1334–1338.

  • Wyss, M., C. G. Sammis, R. M. Nadeau, and S. Wiemer (2004), Fractal dimension and b-value on cree** and locked patches of the San Andreas fault near Parkfield, California, Bull. Seismol. Soc. Am., 94, 410–421.

  • Zang, A., F. Wagner, S. Stanchits, G. Dresen, R. Andresen, and M. Haidekker (1998), Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads, Geophys. J. Int., 135, 1113–1130.

  • Zang, A., F. C. Wagner, S. Stanchits, C. Janssen, and G. Dresen (2000), Fracture process zone in granite, J. Geophys. Res, 105(B10), 23,651–23,661.

Download references

Acknowledgments

We thank Stefan Gehrmann and Matthias Kreplin for rock sample preparation, and Erik Rybacki for creating the CT scan images at GFZ-Potsdam, Germany. The manuscript benefitted from detailed comments by Andy Michael and an anonymous reviewer. This research was supported in part by the Southern Californian Earthquake Center under Contribution Number 11017 and 13022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. W. Goebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goebel, T.H.W., Sammis, C.G., Becker, T.W. et al. A Comparison of Seismicity Characteristics and Fault Structure Between Stick–Slip Experiments and Nature. Pure Appl. Geophys. 172, 2247–2264 (2015). https://doi.org/10.1007/s00024-013-0713-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0713-7

Keywords

Navigation