Log in

A New View at Dixmier Traces on \(\mathfrak {L}_{1,\infty } (H)\)

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Dixmier traces are usually defined by means of functionals on \(\mathfrak {l}_\infty (\mathbb {N})\) that are invariant under the forward dilation

$$\begin{aligned} D_+: (\sigma _1,\sigma _2,\sigma _3,\sigma _4,\dots \;) \mapsto (\sigma _1,\sigma _1,\sigma _2,\sigma _2,\dots \;) \end{aligned}$$

and \(\mathfrak {c}_0\)-singular, which means that they vanish at all null sequences.

The backward dilation

$$\begin{aligned} D_-: (\sigma _1,\sigma _2,\sigma _3,\sigma _4,\dots \;) \mapsto (\sigma _2,\sigma _4,\sigma _6,\sigma _8,\dots \;) \end{aligned}$$

can be used, as well. Note that \(D_-\)-invariant functionals automatically vanish on \(\mathfrak {c}_0(\mathbb {N})\).

As observed by Sukochev and coauthors, any requirement concerning dilation invariance can be dropped when working on \(\mathfrak {L}_{1,\infty } (H)\). It just suffices to assume that the generating functionals vanish on \(\mathfrak {c}_0(\mathbb {N})\). So it seems to be a good idea to present the theory of Dixmier traces on the bases of an adapted definition. We carry out this project. Although the fundamental results remain unchanged, their interplay becomes a quite different appearance.

Even more is possible. Looking at the conclusions

Hahn–Banach Theorem     \(\mathfrak {c}_0\)-singular functional     Dixmier trace, we may wonder whether the intermediate step is necessary. Indeed, there exists a sublinear function on the underlying operator ideal \(\mathfrak {L}_{1,\infty } (H)\) that directly yields all proper Dixmier traces via the Hahn–Banach Theorem. So the theory of Dixmier traces can be turned upside down:

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banach, S.: Théorie des opérations linéaires, Warszawa (1932)

  2. Böttcher, A., Pietsch, A.: Orthogonal and skew-symmetric operators in real Hilbert space. Integr. Equ. Oper. Theory 74, 497–511 (2012)

    Article  MathSciNet  Google Scholar 

  3. Connes, A.: Noncommutative Geometry. Academic Press, New York (1994)

    MATH  Google Scholar 

  4. Dixmier, J.: Existence de traces non normales. C. R. Acad. Sci. Paris Sér. A 262, 1107–1108 (1966)

    MathSciNet  MATH  Google Scholar 

  5. Edwards, R.E.: Functional Analysis. Holt, Rinehart, Winston, New York (1965)

    MATH  Google Scholar 

  6. Gohberg, I.C., Kreĭn, M.G.: Introduction to the Theory of Nonselfadjoint Operators in Hilbert Space. American Mathematical Society, Providence, 1969; Russian original: Nauk, Moscow (1965)

  7. Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  8. Guichardet, A.: La trace de Dixmier et autres traces. L’Enseignement Math. (2) 61, 461–481 (2015)

    Article  MathSciNet  Google Scholar 

  9. Kalton, N.J., Sedaev, A.A., Sukochev, F.A.: Fully symmetric functionals on a Marcinkiewicz space are Dixmier tracers. Adv. Math. 226, 3540–3549 (2011)

    Article  MathSciNet  Google Scholar 

  10. Kalton, N., Sukochev, F.A.: Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals. Can. Math. Bull. 51, 67–80 (2008)

    Article  MathSciNet  Google Scholar 

  11. Lord, S., Sedaev, A.A., Sukochev, F.A.: Dixmier traces as singular symmetric functionals and applications to measurable operators. J. Funct. Anal. 224, 72–106 (2005)

    Article  MathSciNet  Google Scholar 

  12. Lord, S., Sukochev, F., Zanin, D.: Singular Traces. De Gruyter, Berlin (2013)

    MATH  Google Scholar 

  13. Lorentz, G.G.: A contribution to the theory of divergent sequences. Acta Math. 80, 167–190 (1948)

    Article  MathSciNet  Google Scholar 

  14. Mazur, S.: On the generalized limit of bounded sequences. Colloq. Math. 2, 173–175 (1951)

    Article  MathSciNet  Google Scholar 

  15. von Neumann, J.: Invariant Measures. Lecture Notes, Princeton University 1940/41, American Mathematical Society, Providence (1999)

  16. Pietsch, A.: Eigenvalues and s-Numbers. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  17. Pietsch, A.: Traces and shift invariant functionals. Math. Nachr. 145, 7–43 (1990)

    Article  MathSciNet  Google Scholar 

  18. Pietsch, A.: Dixmier traces of operators on Banach and Hilbert spaces. Math. Nachr. 285, 1999–2028 (2012)

    Article  MathSciNet  Google Scholar 

  19. Pietsch, A.: Shift-invariant functionals on Banach sequence spaces. Stud. Math. 214, 37–66 (2013)

    Article  MathSciNet  Google Scholar 

  20. Pietsch, A.: Traces on operator ideals and related linear forms on sequence ideals (part III). J. Math. Anal. Appl. 421, 971–981 (2015)

    Article  MathSciNet  Google Scholar 

  21. Pietsch, A.: A new approach to operator ideals on Hilbert space and their traces. Integr. Equ. Oper. Theory 89, 595–606 (2017)

    Article  MathSciNet  Google Scholar 

  22. Pietsch, A.: Traces and symmetric linear forms. Arch. Math. (Basel) 112, 83–92 (2019)

    Article  MathSciNet  Google Scholar 

  23. Pietsch, A.: Traces of Hilbert space operators and their recent history. Quaest. Math. https://doi.org/10.2989/16073606.2019.1605415

  24. Raimi, R.A.: Factorization of summability-preserving generalized limits. J. Lond. Math. Soc. (2) 22, 398–402 (1980)

    Article  MathSciNet  Google Scholar 

  25. Sedaev, A.A., Sukochev, F.A.: Dixmier measurability in Marcinkiewicz spaces and applications. J. Funct. Anal. 265, 3053–3066 (2013)

    Article  MathSciNet  Google Scholar 

  26. Semenov, E., Sukochev, F., Usachev, A.: Banach limits and traces on \(\cal{L}_{1,\infty }\). Adv. Math. 285, 568–628 (2015)

    Article  MathSciNet  Google Scholar 

  27. Sucheston, L.: Banach limits. Am. Math. Mon. 74, 308–311 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Pietsch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietsch, A. A New View at Dixmier Traces on \(\mathfrak {L}_{1,\infty } (H)\). Integr. Equ. Oper. Theory 91, 21 (2019). https://doi.org/10.1007/s00020-019-2509-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-019-2509-3

Keywords

Mathematics Subject Classification

Navigation