Log in

ERKs are the point of divergence of PKA and PKC activation by PTHrP in human skin fibroblasts

  • Research Article
  • Published:
Cellular and Molecular Life Sciences CMLS Aims and scope Submit manuscript

Abstract.

Parathyroid hormone-related peptide (PTHrP) receptors, coupled to trimeric G proteins, operate in most target cells through at least three different transduction routes: Gαs-mediated stimulation of adenylylcyclase (AC), Gαq-mediated activation of phospholipase Cβ (PLC) and mitogen-activated protein kinase (MAPK) activation. In this study we investigated the relative role of different pathways in human skin fibroblast prolifera-tion. Using chemical inhibitors and activators of signal transduction, we demonstrated that: (i) AC/cAMP and PLC/1,4,5 inositol triphosphate/diacylglycerol second-messenger systems are simultaneously activated following PTHrP binding to its receptors; (ii) the mitogenic response to PTHrP derives from a balance between two counteracting pathways – an activating route mediated by protein kinase C (PKC) and an inhibitory route mediated by protein kinase A (PKA); (iii) PTHrP mitogenic effects are largely dependent on MAPKs, whose activity can be modulate d by both PKA and PKC. Our results indicate that MAPKs are common targets of both transduction routes and, at the same time, their point of divergence in mediating PTHrP dual and opposite mitogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 2 August 2002; received after revision 10 September 2002; accepted 18 October 2002

RID="*"

ID="*"Corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortino, V., Torricelli, C., Gardi, C. et al. ERKs are the point of divergence of PKA and PKC activation by PTHrP in human skin fibroblasts. CMLS, Cell. Mol. Life Sci. 59, 2165–2171 (2002). https://doi.org/10.1007/s000180200015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s000180200015

Navigation