Introduction

Pancreatic β-cells are glucose-regulated insulin-producing cells located in islets of Langerhans in the pancreas. These cells play an essential role in glucose metabolism and regulation. Reduction in β-cell function and/or mass can lead to alterations in glucose metabolism leading to abnormal elevation in blood glucose levels and eventually causing diabetes. Different therapeutic approaches for diabetes aim to maintain/restore the β-cell mass, hence function, including whole pancreas or pancreatic islet cell transplantation [1]. However, with islet transplantation being the ideal treatment for type 1 (T1D) and end-stages of type 2 diabetes (T2D), it remains difficult due to the limited number of donors and the need for the usage of strong immunosuppressant drugs [2]. Moreover, pancreatic islet cell transplantation requires at least 10,000 islet equivalents per kilogram of body weight which can be obtained from 2–3 donors approximately [3]. This also adds up to the limited resources for treating more patients with diabetes in need for such interventions. New research approaches aim to efficiently generate an unlimited source of functional pancreatic β-cells in vitro using human pluripotent stem cells (hPSCs) [4]. hPSCs are a valuable tool for generating different types of cells, including pancreatic islets and β-cells. As the structure of pancreatic islets is essential for proper cell-to-cell interaction and proper regulation of insulin secretion, multiple efforts focus on understanding the complex connective network between the different endocrine cells [5].

Recent studies have described that not all pancreatic β-cell populations are similar but heterogenous. To gain more insight, one should consider the factors that could contribute to β-cell heterogeneity. Hence, understanding the process of β-cell development, β-cell interaction with neighbouring cells, and β-cell response to stimulus can open the door to an explanation behind β-cell heterogeneity.

Islet structure and composition

The adult endocrine pancreas, islets of Langerhans, constitutes about 1–4% of the total pancreas [6]. Each islet contains hormone-producing cells that synthesize and release glucagon (GCG; α-cells), insulin (INS; β-cells), somatostatin (SST; δ-cells), pancreatic polypeptide (PPY; γ-cells) and ghrelin (GHRL; ε-cells) in a nutrient-dependent fashion [7, 8]. Pancreatic islets receive up to 20% of the total pancreatic blood supply, hence, they are defined as highly vascularized micro-organs [9]. In addition, studies have shown that the microvascular density of pancreatic islets is 5–10 times higher than that of surrounding exocrine tissues [10]. The increased islet vascularization helps in sensing the systemic blood glucose levels, which is essential for the proper accomplishment of the islets’ endocrine function and efficient hormone delivery to target tissues [9, 11]. It has been reported that islets are not simply disordered clusters of endocrine cells but are highly organized micro-organs with a species-specific three-dimensional architecture. This unique cellular organization allows pancreatic islets to effectively carry out their primary physiological function of responding to changes in metabolic demands and regulating optimal glucose levels in the bloodstream. Furthermore, physical, and electrical cell–cell coupling enable synchronous hormone secretion, and intra-islet paracrine signaling is directed and connected with the nervous system for feedback regulation [12,13,14].

The architecture of mouse islets is characterized by a central, rounded core primarily composed of insulin-secreting β-cells. Meanwhile, the islet periphery is mainly occupied by α-cells that secrete glucagon, δ-cells that secrete somatostatin, and γ-cells that secrete polypeptide [15]. The β-cells located in the central core of the islet form rosette structures that are polarized around the blood capillaries [16]. Within these rosettes, β-cells have an apical domain located on the outer edge of the rosette, where primary cilia extend into the shared extracellular spaces. The basal domain of the β-cell is located adjacent to the blood vessel, where the insulin granules are located. The lateral domains between the edges of β-cells are enriched in glucose transporters and Ca2 + sensing machinery [16,17,18]. The architecture of human islets is characterized by a higher degree of complexity. There are several proposed models for the “stereotypical” human islet, each with its unique features [19,20,21]. The proportion of the primary endocrine cell types within the islet varies between mice and humans. In mice, approximately 75–80% of the islet cells are β-cells, with 20% α-cells, and less than 10% δ-cells. In contrast, the islets in humans have a lower proportion of β-cells, ranging from 55 to 70% and a higher percentage of α-cells, ranging from 30 to 45%, with less than 10% for both δ- and γ-cells [19, 20, 22,23,24]. The size of human islets can vary significantly, with a diameter range of approximately 50–500 μm and an average of 1500 cells per islet. Variations in the ratio of endocrine cells among individuals are reflected in differences in β-cell mass, [25, 26], while the distribution of islet cells across pancreatic regions exhibits only minor differences [27]. Differences in the methods used to study human islet architecture have resulted in various proposed models, and it is uncertain whether a stereotypical architecture exists in humans at all [11, 26]. However, research supports the existence of a common design principle between mice and humans, wherein homotypic interactions among the same type of endocrine cells are more crucial than heterotypic interactions between different types of endocrine cells [26, 28, 29]. Recent findings suggest that there are also conserved β-cells polarity domains in both species, but their functional roles in islets remain unclear and require further investigation [18, 30, 31].

Heterogeneity of pancreatic β-cells

Cumulative evidence showed the existence of heterogenous β-cell sub-populations. By implementing new biomarkers and using advanced single-cell analyses, the identification of the different β-cell sub-populations became more promising. Initially, β-cell heterogeneity has been suggested through the identification of various response levels to glucose observed by different INS biosynthesis and secretion patterns [32]. Additional β-cell heterogeneity aspects include differences in maturity and proliferative states, redox states, membrane potentials, and glucose transport [33]. Different studies have revealed β-cell heterogeneity in animal and human models. However, here, we only focus on the identified β-cell populations in humans.

Maturation and proliferative heterogeneity

Proper glucose response and INS secretion require mature β-cells that can synthesize sufficient amounts of INS upon glucose uptake. Immature β-cells are marked with higher proliferation and metabolic demands for the energy-consuming processes during cell proliferation [34]. Unlike immature β-cells, mature cells become more function-specific and less proliferative. Interestingly, the existence of both mature and immature β-cell populations has been discovered using single-cell analysis techniques. Wang et al. revealed three β-cell clusters (C1, C2, and C3) with different proliferative capabilities [34] (Table 1). C1 showed a quiescent cell state with no proliferation, while C2 and C3 revealed higher proliferative rates indicated by the expression of proliferation marker Ki67+ [34]. Interestingly, C1 showed high PDX1 and INS expression and is found to be increased with age but decreased with obesity. Proliferative C2 and C3 express a set of genes important for cell adhesion and migration including CD44, CD9, CD49F, and CYP26A1. Furthermore, C2 showed higher phosphorylation levels of PDGFRA, pERK1/2, pSTAT3, and pSTAT5. Regression models revealed that C2 negatively correlates with T2D, while C3 negatively correlates with age [34]. Several other studies support the presence of different β-cell populations depending on their maturity level. Szabat et al. identified two β-cell populations with distinct gene profiles: PDX1+/INSlow and PDX1high/INShigh [35]. PDX1+/INSlow cell population exhibits immature β-cell characteristics, associated with upregulated developmental, proliferative, and apoptotic markers (Table 1). Since PDX1+/INSlow are immature cells, β-cell function associated genes are remarkably reduced and cells reflected progenitor-like phenotype with polyhormonal gene profile by expressing PPY, GCG, SST, and GHRL. Remarkably, the expression of calcium-modulated INS secretion regulators (CAMK2G and MAPK4) is increased. However, MAPK1, a regulator of INS secretion in response to glucose, is decreased in PDX1+/INSlow cell population [35]. Furthermore, a few diabetes-related genes are enriched in PDX1+/INSlow cells as well including DPP4, LEPR, and SIRT5. Syntaphilin (SNPH), an inhibitor of SNARE complex formation and exocytosis regulator, is also increased [35]. PDX1high/INShigh population composed the majority of the β-cell population (78.3%) and showed mature β-cell characteristics with increased INS secretion. This cell population has high levels of mature β-cell function-related genes including GLUT2, MAPK1, CALML4, TIPRL, G6PC2, IAPP, and GCGR. Yet, SIRT1, a diabetes-related gene that has been shown to enhance INS resistance and diabetes, is found to be higher in PDX1high/INShigh [35, 36]. Even though PDX1high/INShigh are mature cells, development-related genes in TGFβ superfamily are also enriched such as BMP5, GREM1, and TGFBR3. Conversely, PDX1+/INSlow cells have increased expression of FSTL5 and BAMBI which are from the same TGFβ superfamily [35]. Nevertheless, mature cells display enriched maturity-related genes like GCGR, IAPP, and MAPK1 [35].

Table 1 Beta cell subpopulations identified in human pancreatic islets

Other research groups have identified β-cell heterogeneity according to surface markers expressed on β-cells. Dorrell and colleagues have categorized β-cells into four distinct populations based on two surface markers (CD9 and ST8SIA1) [37]. Interestingly, ST8SIA1 cells, composing ~ 85% in healthy individuals, express high GLUT2 levels and show more mature phenotypes regarding β-cell functionality. By contrast, ST8SIA1+ cells show immature cell phenotypes and compose ~ 15% in healthy individuals. Additionally, immature cells had lower INS secretion profile and decreased GLUT2 expression [37]. Yet, ST8SIA1+ cells have increased K+ channel expression and a three-fold increase in f-channel HCN1 expression, a possible gene with INS secretion relevance [37]. Several transcriptional factors (TFs) are expressed in ST8SIA1+ as well, such as SIX3, RFX6, MAFB, and NEUROD1. SIX3 has been identified as an important TF in age-related β-cell maturation and expression levels positively correlate with INS secretion [37, 38]. Moreover, the ST8SIA1 cell population is reduced in T2D, while the ST8SIA1+ cell population increases in the case of diabetes [37]. Recently, CD9 has been identified as a negative surface marker for functional glucose-responsive β-cells. hPSC-derived pancreatic β-cells, which are negative for CD9, have higher NKX6.1, MAFA, and C-peptide levels in comparison to CD9+ cells [39].

The hallmark of a mature β-cell involves a complex cellular identity with finely tuned coupling to the prevailing glucose level. Ultra-structurally, a β-cell is estimated to contain ~ 10,000 dense-core secretory granules with a clear peripheral mantle and the presence of fully processed proinsulin molecules in these dense-core granules depends on the maturity of the β-cell [40]. The concerted activity of key TFs determines the fate of endocrine cells; hence, mature β-cells are also distinct in terms of the expression of certain genes and TFs. Single-cell analyses that have revealed the transcriptional program of human pancreatic endocrine cells depicted genes such as PAX4, PDX1, MAFA, MAFB, DLK1, SIX2/3, ID1, IAPP, UCN3, and OLIG1 that are highly or exclusively expressed in human β-cells [143]. Taken together, it has been suggested that GHRL is a paracrine modulator of INS secretion and exert INS-static action on pancreatic β-cells via the inhibitory signaling of GHSR.

Autocrine and paracrine action of β-cells and functional heterogeneity

Endocrine cells within the pancreatic islets secrete a wide range of diffusible chemical messengers, the autocrine or paracrine factors, which via binding to cognate receptors, are able to evoke biological effects in the neighbouring cells. Experimental studies have shown that by synchronizing their secretory activity in response to electrical coupling, autocrine or paracrine signaling, islet β-cells exploit several pathways of cell-to-cell communication [144]. However, human β-cells show complex and heterogeneous electrophysiological responses to many factors including ion channel antagonists [145]. This is probably due to the variability in the number of specific channels between β-cells that has been modelled to generate variable oscillation patterns and responses thus affecting the regularity of membrane potential bursting and [Ca2+] oscillations [146,147,148]. One of the paracrine mediators of human β-cell is mediated by glucagon (released from α-cell) signaling, which activates human β-cell G protein-coupled receptors (GPCR), including glucagon receptor (GCGR), and glucagon-like peptide 1 receptor (GLP-1R) [114, 116]. Both glucagon and GLP-1 increase intracellular cAMP levels and elicit synchronous intracellular Ca2 + oscillation respectively in human β-cell [116, 149]. By utilizing optogenetics, based on the signature of Ca2+ dynamics, discrete functional subpopulations of β-cells have been identified [14]. Therefore, it is likely that these subpopulations of β-cells will show functional heterogeneity in controlling coordinated electrical regulation and electrical dynamics in response to paracrine actions of glucagon or GLP-1.

Hub cell dynamics

The idea of having pancreatic β-cells residing freely without clustering has been recently studied. Several studies have suggested that the role of these scattered β-cells (hub cells) is to regulate INS expression while coordinating islet oscillatory in a pacemaker-like manner (Fig. 2). A previous study employed large-scale functional cell map** and optogenetics and demonstrated that ~ 1 to 10% of the β-cell population (i.e. hub cells) controls the synchronized and rhythmic action of pancreatic islets [150]. Hub cells have been found to be highly connected to other β-cells and robustly respond to high glucose levels compared to other “follower” β-cell subpopulations (Fig. 2). Hub cells have low expression of PDX1 and NKX6.1 pancreatic markers with increased expression of glucokinase (GCK), an important protein in the glycolysis pathway, but with less INS expression (~ 50%) [150, 151]. In addition, examination of the mitochondrial activity in these hub cells showed no difference in mitochondrial number, but increased activity is observed using tetramethylrhodamine ethyl ester (TMRE) imaging. The increased expression of GCK and mitochondrial activity in hub cells may suggest a mechanism of action for these cells for their high level of respondence to glucose levels. Furthermore, β-cells with low INS levels have been found to have high ATP levels with normal glucose sensing and cell survival [151]. This may suggest that hub cells conserve their energy by decreasing the ATP-consuming INS production process [151]. However, hub cells subjected to glucotoxicity, lipotoxicity or pro-inflammatory conditions, as in diabetes, fail to properly respond to the high glucose levels marking them as metabolically fragile cells, which eventually can lead to ER stress and cell dysfunction [150].

Fig. 2
figure 2

Schematic representation of pancreatic β-cell hub and follower cells dynamics. Hub cells characterized by the high expression of GCK, possibly due to lower PDX1 and NKX6.1 expression levels compared to follower cells. Hence, hub cells can respond faster to increased glucose levels by metabolizing glucose into pyruvate resulting in more ATP synthesis. The increase in ATP levels causes the closure of ATP-dependent potassium pumps, hence lowering intracellular positive charges, which consequently results in the opening of voltage-gated calcium channels (VGCC) and increases Ca2+ uptake by the cells. Later, the taken Ca2+ by hub cells can be transferred to follower cells through gap junctions causing stimulation of these cells, with high INS content, to release their stored INS. Hence, hub cells sense the changes in glucose levels more rapidly and take action to serve as ‘pace-maker’ cells

Interestingly, other subpopulations of β-cells exhibiting high functional connectivity, referred to as “wave-initiators” or “leaders” as stated in Sterk et al. [152] and “first responders” as explained in Kravet et al. [153], have been recently identified. It has been suggested that hub, wave-initiator, and first responder cells are characteristic components of islets; however, they exhibit distinct Ca2+ signaling characteristics and do not appear to have overlap** functions [152, 153]. The first responders lead the first phase Ca2+ response, are more excitable and crucial for mobilizing β-cells to increase Ca2+ immediately after glucose stimulation [153]. It has been found that during the transition from low to high glucose levels, the first responder cells play a crucial role in recruiting and coordinating Ca2+ activity within a specific time frame, as different cells lead distinct phases of the Ca2+ response to glucose (first responders for the first phase, and leader cells for the second phase) [153]. Previous studies have linked leader (wave origin) cells to the regulation of second-phase Ca2+ dynamics [152], in which hub cells are associated with maintaining elevated and coordinated Ca2+ [14, 154]. This suggests that the heterogeneity controlling second-phase Ca2+ is distinct from that of first-phase Ca2+.

There has been significant debate about the function of hub cells and other subpopulations and their effect on islet function. The identification and categorization of distinct β-cell subgroups, evaluation of their operational features, and understanding of how the group of cells work together to regulate intercellular calcium activity and insulin release within an islet are highly engaging areas of research that have captured significant interest within the islet biology field. Therefore, in the years to come, we anticipate an increase in research aimed at revealing the distinct contributions of these populations towards the coordinated β-cell activity under different conditions.

Heterogeneity of stem cell-derived islet cells

Generation of stem cell-derived islet organoids: recent progress

Through utilizing hPSCs, different pancreatic differentiation protocols have been designed to mimic human embryonic development in vitro (Fig. 3). Understanding the sequential process of pancreatic development serves as the foundational template for protocols’ design. An initial step in pancreatic differentiation is to generate highly efficient definitive endoderm (DE) cells to be then directed towards hepatic or pancreatic tissues [155, 156]. Afterwards, activation of signaling pathways promoting pancreatic differentiation takes place while inhibiting hepatic-promoting signaling pathways [157]. To generate efficient DE, most protocols include Activin A in the first 3–5 days of differentiation to activate the Activin-Nodal signaling pathway [157, 158]. Generated DE cells are then introduced to FGF10, FGF7 or keratinocyte growth factor (KGF) and retinoic acid (RA) for FGF and RA signaling activation while inhibiting Sonic Hedgehog (SHH) signaling pathway through the addition of KAAD-Cyclopamine or SANT-1 for PDX1 induction [159,160,161]. An essential step then follows where hepatic lineage differentiation is prevented by inhibiting the BMP signaling pathway through BMP inhibitors such as Dorsomorphin or Noggin [162, 163]. Upon PDX1 induction, nicotinamide and EGF are added to induce NKX6.1 expression to generate PDX1+/NKX6.1+ pancreatic progenitors (PPs) [159, 160]. Following that, PPs are then differentiated into endocrine progenitors (EPs) expressing NEUROG3 through the addition of γ-secretase inhibitors or DAPT to inhibit the Notch signaling pathway, and β-cellulin and ALK5i to block the TGF-β signaling pathway [164]. To induce INS and MAFA production, high glucose media supplemented with Triiodothyronine (T3), a thyroid hormone, as well as ALK5i is added to the generated EPs to prevent their transition from epithelial to mesenchymal cells [165, 166]. In addition, NKX6.1 expression is found to be exclusively restricted to β-cells where it participates in their development, INS-containing vesicle formation, INS secretory function, and maintains their β-cell identity [167, 168]. As a result, the efficient generation of PDX1 and NKX6.1 co-expressing PPs and later generation of NKX6.1+/INS+ β-cells are crucial for the generation of mature, functional, mono-hormonal β-cells. Hence, the process of in vitro pancreatic β-cell differentiation utilizes small molecules and growth factors targeting specific pathways to either suppress or enhance them [4].

Fig. 3
figure 3

Overview of in vitro hPSC-derived pancreatic β-cell differentiation stages. hPSCs are differentiated into β-cells using a stepwise protocol of 7 stages each marked by the expression of specific transcriptional factors. A Some pancreatic differentiation protocols use the 2D culturing system from day 0 until the mature β-cell stage such as Hogrebe et al. [212]. B Other differentiation protocols use a 2D culturing system during the first 4 stages and then shift to 3D system during late stages (stages 5–7) to recapitulate the in vivo islet environment and allow better cell–cell contact such as Rezania et al. protocol [166]. C There are several protocols that start pancreatic differentiation as a 3D system from day 0 moving towards the last stages such as Melton’s protocols [166, 174]. hPSCs human pluripotent stem cells, DE definitive endoderm, PGT primitive gut tube, PF; posterior foregut, PPs pancreatic progenitors, EPs endocrine progenitors

Multiple studies have shown that the generation of functional mono-hormonal pancreatic β-cells is mainly derived from PDX1 and NKX6.1 co-expressing PPs, which currently, can be generated with high efficiency (~ 80–90% of PDX1+/NKX6.1+ cells) [159, 169]. Constant modifications and protocol enhancements in pancreatic differentiation have led us to the generation of efficient functional pancreatic β-cells ~ 30–50% co-expressing C-PEP and NKX6.1 [165, 166, 170,171,182]. Interestingly, slender T2D patients were found to have higher numbers of poly hormonal cells [183] that could play a role in stress-adaptation and maintaining normal glucose levels. Characterization of these poly hormonal cells revealed that these cells secrete INS and GCG upon non-glucose associated membrane depolarization and may be fated towards α-cells in vivo [182, 184,185,186]. The natural occurrence of these poly hormonal cells suggests that they might have a role in postnatal pancreatic β-cell maturation and function or other important roles that are yet to be discovered.

Pancreatic progenitor and endocrine progenitor subpopulations derived from hPSCs

During embryo development, multipotent PP cells expressing the TFs, PDX1, NKX6.1, FOXA2, SOX9, HNF6, and PTF1A, differentiate into exocrine (acinar and duct) and endocrine (islets of Langerhans) pancreas [168]. PDX1 and NKX6.1 specifically, are known to be crucial factors for generating functional, mono-hormonal INS-secreting β-cells [2]. Therefore, hPSC differentiation protocols aim to generate efficient PP cells co-expressing PDX1 and NKX6.1. However, variations in PDX1 and NKX6.1 expression patterns have been observed when applying the same differentiation protocol on eight different human embryonic stem cell (hESC)/ human induced pluripotent stem cell (hiPSC) lines [2, 159]. This can be considered one of the factors resulting in mature β-cells heterogeneity that must be considered when designing transplantation protocols.

PDX1 is the earliest TF to be produced during pancreas development [187]. Interestingly, as PPs further differentiate, PDX1 expression becomes restricted to β-cells. Although PDX1 is essential for β-cell differentiation, generated PDX1+/NKX6.1 PPs differentiate into GCG-secreting cells or non-functional poly hormonal β-cells that co-express INS and other islet hormones. These polyhormonal β-cells cannot be used as an option for transplantation therapy as they lack the hallmark function of β-cells [2, 5]. Multiple studies have reported the generation of GCG-secreting α-cells upon in vivo transplantation of hESC-derived poly hormonal cells [176, 184, 185, 188, 189]. Interestingly, a novel PDX1/NKX6.1+ PP population has been recently identified and is able to generate functional glucose-responsive β-cells [168, 190].

Several in vitro pancreatic differentiation protocols suggest the generation of functional β-cells from PDX1+/NKX6.1+ PP populations that later express NEUROG3 [185, 186]. Studies have shownheterogeneity at EP stage marked by the difference in NEUROG3 expression where NEUROG3 EPs lacked PDX1 expression but co-expressed CDX2 [191]. Another study further identified subclusters within NEUROG3+ cells: EPs (39.1%), poly hormonal endocrine cells (Endo; 42%), duct cells (6%), liver cells (8.2%), and an unknown cell type cluster (4.7%) [192]. The identified EP cluster had three different sub-clusters where they expressed different profiles with EP1 expressing the highest NEUROG3 levels, EP2 expressing TPH1 and FEV, and EP3 expressing GAST. In addition, the authors identified three endocrine clusters targeted towards different cell fates. Endo1 expressed ERO1B and SLC30A8 indicating β-cell fate, Endo2 expressed GCG, PEMT, and IRX2 indicating α-cell fate, while Endo3 expressed SST and HHEX suggesting δ-cell fate [192]. These results show the further complexity in endocrine cell populations and further heterogeneity can be observed as cells differentiate towards end-stages of pancreatic differentiation.

As hPSC-derived pancreatic differentiation protocols can generate heterogenous cell populations in which some could even be committed towards non-pancreatic lineages, several studies aimed to purify PPs directed towards β-cells. Previous studies reported that PPs can be purified using cell surface markers. Glycoprotein 2 (GP2), CD142, and CD24 have been found to be specifically expressed in PPs that can generate functional INS-secreting cells [186, 193,194,195,196]; therefore, those markers have been used to purify PDX1+ cells at the PP stage. On the other hand, NEUROG3-expressing cells can be isolated from the heterogenous population at the EP stage using specific surface markers, including SUSD2, CD318, CD133, CD200, and CD49f [186, 197]. This indicates that pure NEUROG3+ cells can be obtained for further differentiation into pancreatic islet cells. In 2018, a study compared in vivo and in vitro EP cells (stage 5) post-sorting based on E-cadherin, CD142 and SUSD2 surface markers which were previously described to discriminate between progenitors fated towards β-cells from those fated towards α- or γ-cells [196, 197]. In vitro EPs have increased levels of RFX6 and CDX2 that might reflect a mixed pancreas-duodenum fated populations or early PPs. On the other hand, human fetal EPs express high NKX6.1 and DLK1 levels. In addition, GPM6A, CDKN1A, and BMP5 have been found to be sporadically expressed in the in vitro-generated EPs [198].

Subpopulations of hPSC-derived islet cells

Recently, multiple single-cell transcriptome studies performed on human islet cells and hPSC-derived islets highlighted the unique genetic signatures and intra-islet heterogeneity levels. By tackling these studies, it is suggested that the early stages of pancreatic development are widely consistent with homogenous profiles. On the other hand, during late pancreatic developmental stages where endocrine commitment takes place, this uniformity starts to be lost resulting in different end-stage cells with different genetic profiles. Although limited studies focused on generated pancreatic β-cell populations derived from hPSCs have been found, multiple single-cell analysis studies have identified and supported that islet cells heterogeneity starts from pancreatic and EP stages. These studies also indicated that hPSC-derived islets generated in vitro, differ from adult human islets where cell heterogeneity depends on the differentiation protocol used.

One of the important studies that tackled hPSC-derived β-cell heterogeneity has been done by Veres et al. [174]. The study reported that cells’ heterogeneity starts to appear from stage 4 and continued onwards. At end-stages, β-cells expressing β-cell markers such as INS, NKX6.1, and ISL1, α-like cells expressing GCG, ARX, IRX2, including INS, and a small subset of SST+/HHEX+/ISL1+ resembling δ-cell population have been identified [174]. They also detected a new population of enterochromaffin cells, located within the intestinal epithelium, marked by the expression of TPH1 and SLC18A1, which are normally not present in fetal or adult islets [174]. Several study groups have identified such off-target populations during hPSC-derived islet cell differentiation [174, 192, 199, 200]. Therefore, β-cell purification methods using surface markers can be used to isolate the functional mono-hormonal β-cell fraction from the total heterogenous hPSC-derived islet populations. Recent studies have identified CD49a as a specific cell surface marker for the functional INS+ cell fraction, which then can be re-aggregated to form 3D islet organoid structures [174, 201]. Nevertheless, the isolation of β-cells from the generated islet organoids would cause disturbance of the islet architecture that is required to mimic the in vivo environment. Reports have shown that disturbed islets perform less when compared with intact islet cells during GSIS [202,203,204]. Yet, islet cell fractionation and then re-aggregation of isolated β-cells enhances their functional maturation and response to glucose [

Availability of data and materials

No data availability.

Abbreviations

CAMs:

Cell adhesion molecules

Cxs:

Connexins

DE:

Definitive endoderm

EPs:

Endocrine progenitors

ER:

Endoplasmic reticulum

GCG:

Glucagon

GCK:

Glucokinase

GJs:

Gap junctions

GlyRs:

Glycine receptors

hiPSCs:

Human induced pluripotent stem cells

hPSCs:

Human pluripotent stem cells

INS:

Insulin

PPs:

Pancreatic progenitors

ROS:

Reactive oxygen species

SST:

Somatostatin

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

TFs:

Transcription factors

UPR:

Unfolded protein response

References

  1. Narushima M, Kobayashi N, Okitsu T, Tanaka Y, Li S-A, Chen Y, Miki A, Tanaka K, Nakaji S, Takei K, Gutierrez AS, Rivas-Carrillo JD, Navarro-Álvarez N, Jun H-S, Westerman KA, Noguchi H, Lakey JRT, Leboulch P, Tanaka N, Yoon J-W (2005) A human β-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23(10):1274–1282. https://doi.org/10.1038/nbt1145

    Article  CAS  PubMed  Google Scholar 

  2. Memon B, Abdelalim EM (2020) Stem cell therapy for diabetes: beta cells versus pancreatic progenitors. Cells 9(2):283. https://doi.org/10.3390/cells9020283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balamurugan AN, Loganathan G, Tweed B, Tucker WW, Subhashree V, Mokshagundam SPL, Hughes MG, Williams SK (2016) Islet cell transplant. In: Lim JW (ed) Contemporary pancreas transplantation. Springer International Publishing, Cham, pp 1–25. https://doi.org/10.1007/978-3-319-20789-6_9-2

    Chapter  Google Scholar 

  4. Abdelalim EM (2021) Modeling different types of diabetes using human pluripotent stem cells. Cell Mol Life Sci 78(6):2459–2483. https://doi.org/10.1007/s00018-020-03710-9

    Article  CAS  PubMed  Google Scholar 

  5. Shahjalal HM, Abdal Dayem A, Lim KM, Jeon T-I, Cho S-G (2018) Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Res Ther 9(1):355–355. https://doi.org/10.1186/s13287-018-1099-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dolenšek J, Rupnik MS, Stožer A (2015) Structural similarities and differences between the human and the mouse pancreas. Islets 7(1):e1024405–e1024405. https://doi.org/10.1080/19382014.2015.1024405

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103:2334–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wierup N, Sundler F (2005) Ultrastructure of islet ghrelin cells in the human fetus. Cell Tissue Res 319(3):423–428. https://doi.org/10.1007/s00441-004-1044-x

    Article  PubMed  Google Scholar 

  9. Rorsman P, Ashcroft FM (2018) Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98(1):117–214. https://doi.org/10.1152/physrev.00008.2017

    Article  CAS  PubMed  Google Scholar 

  10. Konstantinova I, Lammert E (2004) Microvascular development: learning from pancreatic islets. BioEssays 26(10):1069–1075. https://doi.org/10.1002/bies.20105

    Article  CAS  PubMed  Google Scholar 

  11. Dybala MP, Kuznetsov A, Motobu M, Hendren-Santiago BK, Philipson LH, Chervonsky AV, Hara M (2020) Integrated pancreatic blood flow: bidirectional microcirculation between endocrine and exocrine pancreas. Diabetes 69(7):1439–1450. https://doi.org/10.2337/db19-1034

    Article  PubMed  PubMed Central  Google Scholar 

  12. Arrojo E Drigo R, Ali Y, Diez J, Srinivasan DK, Berggren PO, Boehm BO (2015) New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia 58(10):2218–2228. https://doi.org/10.1007/s00125-015-3699-0

    Article  PubMed  Google Scholar 

  13. Roscioni SS, Migliorini A, Gegg M, Lickert H (2016) Impact of islet architecture on beta-cell heterogeneity, plasticity and function. Nat Rev Endocrinol 12(12):695–709. https://doi.org/10.1038/nrendo.2016.147

    Article  CAS  PubMed  Google Scholar 

  14. Westacott MJ, Ludin NWF, Benninger RKP (2017) Spatially organized beta-cell subpopulations control electrical dynamics across islets of langerhans. Biophys J 113(5):1093–1108. https://doi.org/10.1016/j.bpj.2017.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M (2009) Islet architecture: a comparative study. Islets 1(2):129–136. https://doi.org/10.4161/isl.1.2.9480

    Article  PubMed  Google Scholar 

  16. Geron E, Boura-Halfon S, Schejter ED, Shilo BZ (2015) The edges of pancreatic islet beta cells constitute adhesive and signaling microdomains. Cell Rep 10(3):317–325. https://doi.org/10.1016/j.celrep.2014.12.031

    Article  CAS  PubMed  Google Scholar 

  17. Gan WJ, Zavortink M, Ludick C, Templin R, Webb R, Webb R, Ma W, Poronnik P, Parton RG, Gaisano HY, Shewan AM, Thorn P (2017) Cell polarity defines three distinct domains in pancreatic β-cells. J Cell Sci 130(1):143–151. https://doi.org/10.1242/jcs.185116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farack L, Golan M, Egozi A, Dezorella N, Bahar Halpern K, Ben-Moshe S, Garzilli I, Toth B, Roitman L, Krizhanovsky V, Itzkovitz S (2019) Transcriptional heterogeneity of beta cells in the intact pancreas. Dev Cell 48(1):115-125E114. https://doi.org/10.1016/j.devcel.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  19. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren P-O, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci 103(7):2334. https://doi.org/10.1073/pnas.0510790103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller YD, Giovannoni L, Parnaud G, Berney T (2010) Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 59(5):1202–1210. https://doi.org/10.2337/db09-1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bonner-Weir S, Sullivan BA, Weir GC (2015) Human islet morphology revisited: human and rodent islets are not so different after all. J Histochem Cytochem 63(8):604–612. https://doi.org/10.1369/0022155415570969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ichii H, Inverardi L, Pileggi A, Molano RD, Cabrera O, Caicedo A, Messinger S, Kuroda Y, Berggren PO, Ricordi C (2005) A novel method for the assessment of cellular composition and beta-cell viability in human islet preparations. Am J Transplant 5(7):1635–1645. https://doi.org/10.1111/j.1600-6143.2005.00913.x

    Article  PubMed  Google Scholar 

  23. Ionescu-Tirgoviste C, Gagniuc PA, Gubceac E, Mardare L, Popescu I, Dima S, Militaru M (2015) A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep 5:14634. https://doi.org/10.1038/srep14634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pisania A, Weir GC, O’Neil JJ, Omer A, Tchipashvili V, Lei J, Colton CK, Bonner-Weir S (2010) Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Lab Invest 90(11):1661–1675. https://doi.org/10.1038/labinvest.2010.124

    Article  PubMed  PubMed Central  Google Scholar 

  25. Olehnik SK, Fowler JL, Avramovich G, Hara M (2017) Quantitative analysis of intra- and inter-individual variability of human beta-cell mass. Sci Rep 7(1):16398. https://doi.org/10.1038/s41598-017-16300-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dybala MP, Hara M (2019) Heterogeneity of the Human Pancreatic Islet. Diabetes 68(6):1230–1239. https://doi.org/10.2337/db19-0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poudel A, Fowler JL, Zielinski MC, Kilimnik G, Hara M (2016) Stereological analyses of the whole human pancreas. Sci Rep 6:34049. https://doi.org/10.1038/srep34049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Striegel DA, Hara M, Periwal V (2016) Adaptation of pancreatic islet cyto-architecture during development. Phys Biol 13(2):025004. https://doi.org/10.1088/1478-3975/13/2/025004

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hoang DT, Matsunari H, Nagaya M, Nagashima H, Millis JM, Witkowski P, Periwal V, Hara M, Jo J (2014) A conserved rule for pancreatic islet organization. PLoS ONE 9(10):e110384. https://doi.org/10.1371/journal.pone.0110384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Volta F, Scerbo MJ, Seelig A, Wagner R, O’Brien N, Gerst F, Fritsche A, Haring HU, Zeigerer A, Ullrich S, Gerdes JM (2019) Glucose homeostasis is regulated by pancreatic beta-cell cilia via endosomal EphA-processing. Nat Commun 10(1):5686. https://doi.org/10.1038/s41467-019-12953-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cottle L, Gan WJ, Gilroy I, Samra JS, Gill AJ, Loudovaris T, Thomas HE, Hawthorne WJ, Kebede MA, Thorn P (2021) Structural and functional polarisation of human pancreatic beta cells in islets from organ donors with and without type 2 diabetes. Diabetologia 64(3):618–629. https://doi.org/10.1007/s00125-020-05345-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pipeleers D, De Mesmaeker I, Robert T, Van Hulle F (2017) Heterogeneity in the beta-cell population: a guided search into its significance in pancreas and in implants. Curr Diab Rep 17(10):86–86. https://doi.org/10.1007/s11892-017-0925-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Benninger RKP, Hodson DJ (2018) New understanding of β-cell heterogeneity and in situ islet function. Diabetes 67(4):537–547. https://doi.org/10.2337/dbi17-0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Yue J, Golson Maria L, Schug J, Traum D, Liu C, Vivek K, Dorrell C, Naji A, Powers Alvin C, Chang K-M, Grompe M, Kaestner Klaus H (2016) Single-cell mass cytometry analysis of the human endocrine pancreas. Cell Metab 24(4):616–626. https://doi.org/10.1016/j.cmet.2016.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Szabat M, Pourghaderi P, Soukhatcheva G, Verchere CB, Warnock GL, Piret JM, Johnson JD (2011) Kinetics and genomic profiling of adult human and mouse β-cell maturation. Islets 3(4):175–187. https://doi.org/10.4161/isl.3.4.15881

    Article  PubMed  Google Scholar 

  36. Kitada M, Koya D (2013) SIRT1 in type 2 diabetes: mechanisms and therapeutic potential. Diabetes Metab J 37(5):315–325. https://doi.org/10.4093/dmj.2013.37.5.315

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dorrell C, Schug J, Canaday PS, Russ HA, Tarlow BD, Grompe MT, Horton T, Hebrok M, Streeter PR, Kaestner KH, Grompe M (2016) Human islets contain four distinct subtypes of β cells. Nat Commun 7:11756–11756. https://doi.org/10.1038/ncomms11756

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arda HE, Li L, Tsai J, Torre EA, Rosli Y, Peiris H, Spitale RC, Dai C, Gu X, Qu K, Wang P, Wang J, Grompe M, Scharfmann R, Snyder MS, Bottino R, Powers AC, Chang HY, Kim SK (2016) Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function. Cell Metab 23(5):909–920. https://doi.org/10.1016/j.cmet.2016.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Yang KY, Chan VW, Leung KT, Zhang X-B, Wong AS, Chong CCN, Wang CC, Ku M, Lui KO (2020) Single-cell RNA-Seq reveals that CD9 is a negative marker of glucose-responsive pancreatic β-like cells derived from human pluripotent stem cells. Stem Cell Reports 15(5):1111–1126. https://doi.org/10.1016/j.stemcr.2020.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. In’t Veld P, Marichal M (2010) Microscopic anatomy of the human islet of Langerhans. Adv Exp Med Biol 654:1–19. https://doi.org/10.1007/978-90-481-3271-3_1

    Article  PubMed  Google Scholar 

  41. **n Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C, Murphy AJ, Yancopoulos GD, Lin C, Gromada J (2016) RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 24(4):608–615. https://doi.org/10.1016/j.cmet.2016.08.018

    Article  CAS  PubMed  Google Scholar 

  42. Tritschler S, Theis FJ, Lickert H, Böttcher A (2017) Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 6(9):974–990. https://doi.org/10.1016/j.molmet.2017.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Segerstolpe Å, Palasantza A, Eliasson P, Andersson E-M, Andréasson A-C, Sun X, Picelli S, Sabirsh A, Clausen M, Bjursell MK, Smith DM, Kasper M, Ämmälä C, Sandberg R (2016) Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24(4):593–607. https://doi.org/10.1016/j.cmet.2016.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJ, van Oudenaarden A (2016) A single-cell transcriptome atlas of the human pancreas. Cell Syst 3(4):385-394.e383. https://doi.org/10.1016/j.cels.2016.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lawlor N, George J, Bolisetty M, Kursawe R, Sun L, Sivakamasundari V, Kycia I, Robson P, Stitzel ML (2017) Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes. Genome Res 27(2):208–222. https://doi.org/10.1101/gr.212720.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Efrat S (2019) Beta-cell dedifferentiation in type 2 diabetes: concise review. Stem cells (Dayton, Ohio) 37(10):1267–1272. https://doi.org/10.1002/stem.3059

    Article  PubMed  Google Scholar 

  47. Tan MI, Hisana AN, Ridwan A, Fitri LL, Fajar PA (2020) Diabetes and retinol-binding protein (RBP4): the study of free and exosomal RBP4 in blood plasma and urine of patients. Biomed Pharmacol J 13(2):693–699

    Article  CAS  Google Scholar 

  48. Houthuijzen JM (2016) For better or worse: FFAR1 and FFAR4 signaling in cancer and diabetes. Mol Pharmacol 90(6):738. https://doi.org/10.1124/mol.116.105932

    Article  CAS  PubMed  Google Scholar 

  49. Dominguez-Gutierrez G, **n Y, Gromada J (2019) Heterogeneity of human pancreatic β-cells. Mol Metab 27:S7–S14. https://doi.org/10.1016/j.molmet.2019.06.015

    Article  CAS  PubMed Central  Google Scholar 

  50. Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU (2019) Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front Mol Biosci. https://doi.org/10.3389/fmolb.2019.00011

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  52. Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM (2001) Ferritin and the response to oxidative stress. Biochem J 357(1):241–247. https://doi.org/10.1042/0264-6021:3570241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou Y, Duan S, Zhou Y, Yu S, Wu J, Wu X, Zhao J, Zhao Y (2015) Sulfiredoxin-1 attenuates oxidative stress via Nrf2/ARE pathway and 2-Cys prdxs after oxygen-glucose deprivation in astrocytes. J Mol Neurosci 55(4):941–950. https://doi.org/10.1007/s12031-014-0449-6

    Article  CAS  PubMed  Google Scholar 

  54. Dror E, Fagnocchi L, Wegert V, Apostle S, Grimaldi B, Gruber T, Panzeri I, Heyne S, Höffler KD, Kreiner V, Ching R, Tsai-Hsiu LuT, Semwal A, Johnson B, Senapati P, Lempradl A, Schones D, Imhof A, Shen H, Pospisilik JA (2023) Epigenetic dosage identifies two major and functionally distinct β cell subtypes. Cell Metab. https://doi.org/10.1016/j.cmet.2023.03.008

    Article  PubMed  Google Scholar 

  55. Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D, Gilbert N, Fan Y, Skoultchi AI, Wutz A, Bickmore WA (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38(3):452–464. https://doi.org/10.1016/j.molcel.2010.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berthault C, Staels W, Scharfmann R (2020) Purification of pancreatic endocrine subsets reveals increased iron metabolism in beta cells. Mol Metab 42:101060. https://doi.org/10.1016/j.molmet.2020.101060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ahrén B (2000) Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43(4):393–410. https://doi.org/10.1007/s001250051322

    Article  PubMed  Google Scholar 

  58. Nolan CJ, Prentki M (2008) The islet β-cell: fuel responsive and vulnerable. Trends Endocrinol Metab 19(8):285–291. https://doi.org/10.1016/j.tem.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  59. Pérez-Armendariz EM (2013) Connexin 36, a key element in pancreatic beta cell function. Neuropharmacology 75:557–566. https://doi.org/10.1016/j.neuropharm.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  60. Meissner HP (1976) Electrophysiological evidence for coupling between beta cells of pancreatic islets. Nature 262(5568):502–504. https://doi.org/10.1038/262502a0

    Article  CAS  PubMed  Google Scholar 

  61. Charpantier E, Cancela J, Meda P (2007) Beta cells preferentially exchange cationic molecules via connexin 36 gap junction channels. Diabetologia 50(11):2332–2341. https://doi.org/10.1007/s00125-007-0807-9

    Article  CAS  PubMed  Google Scholar 

  62. Ravier MA, Güldenagel M, Charollais A, G**ovci A, Caille D, Söhl G, Wollheim CB, Willecke K, Henquin JC, Meda P (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54(6):1798–1807. https://doi.org/10.2337/diabetes.54.6.1798

    Article  CAS  PubMed  Google Scholar 

  63. Hellman B, Salehi A, Grapengiesser E, Gylfe E (2012) Isolated mouse islets respond to glucose with an initial peak of glucagon release followed by pulses of insulin and somatostatin in antisynchrony with glucagon. Biochem Biophys Res Commun 417(4):1219–1223. https://doi.org/10.1016/j.bbrc.2011.12.113

    Article  CAS  PubMed  Google Scholar 

  64. Hellman B, Salehi A, Gylfe E, Dansk H, Grapengiesser E (2009) Glucose generates coincident insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic islets. Endocrinology 150(12):5334–5340. https://doi.org/10.1210/en.2009-0600

    Article  CAS  PubMed  Google Scholar 

  65. Jain R, Lammert E (2009) Cell-cell interactions in the endocrine pancreas. Diabetes Obes Metab 11(Suppl 4):159–167. https://doi.org/10.1111/j.1463-1326.2009.01102.x

    Article  CAS  PubMed  Google Scholar 

  66. Tengholm A, Gylfe E (2009) Oscillatory control of insulin secretion. Mol Cell Endocrinol 297(1–2):58–72. https://doi.org/10.1016/j.mce.2008.07.009

    Article  CAS  PubMed  Google Scholar 

  67. Meda P (2013) Protein-mediated interactions of pancreatic islet cells. Scientifica. https://doi.org/10.1155/2013/621249

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cigliola V, Allagnat F, Berchtold LA, Lamprianou S, Haefliger JA, Meda P (2015) Role of Connexins and Pannexins in the Pancreas. Pancreas 44(8):1234–1244. https://doi.org/10.1097/mpa.0000000000000378

    Article  CAS  PubMed  Google Scholar 

  69. Berchtold LA, Miani M, Diep TA, Madsen AN, Cigliola V, Colli M, Krivokapic JM, Pociot F, Eizirik DL, Meda P, Holst B, Billestrup N, Størling J (2017) Pannexin-2-deficiency sensitizes pancreatic β-cells to cytokine-induced apoptosis in vitro and impairs glucose tolerance in vivo. Mol Cell Endocrinol 448:108–121. https://doi.org/10.1016/j.mce.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  70. Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5(3):193–197. https://doi.org/10.4161/chan.5.3.15765

    Article  CAS  PubMed  Google Scholar 

  71. Ishihara H, Maechler P, G**ovci A, Herrera PL, Wollheim CB (2003) Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol 5(4):330–335. https://doi.org/10.1038/ncb951

    Article  CAS  PubMed  Google Scholar 

  72. Takeichi M (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59:237–252. https://doi.org/10.1146/annurev.bi.59.070190.001321

    Article  CAS  PubMed  Google Scholar 

  73. Langley K, Aletsee-Ufrecht MC, Grant N, Gratzl M (1989) Expression of the neural cell adhesion NCAM in endocrine cells. J Histochem Cytochem 37:781–791. https://doi.org/10.1177/37.6.2723399

    Article  CAS  PubMed  Google Scholar 

  74. Rouiller DG, Cirulli V, Halban PA (1991) Uvomorulin mediates calcium-dependent aggregation of islet cells, whereas calcium-independent cell adhesion molecules distinguish between islet cell types. Dev Biol 148(1):233–242. https://doi.org/10.1016/0012-1606(91)90332-w

    Article  CAS  PubMed  Google Scholar 

  75. Parnaud G, Lavallard V, Bedat B, Matthey-Doret D, Morel P, Berney T, Bosco D (2015) Cadherin engagement improves insulin secretion of single human β-cells. Diabetes 64(3):887–896. https://doi.org/10.2337/db14-0257

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, Fujiyoshi Y (2014) Crystal structure of a claudin provides insight into the architecture of tight junctions. Science (New York, NY) 344(6181):304–307. https://doi.org/10.1126/science.1248571

    Article  CAS  Google Scholar 

  77. Jiang FX, Mishina Y, Baten A, Morahan G, Harrison LC (2015) Transcriptome of pancreas-specific Bmpr1a-deleted islets links to TPH1-5-HT axis. Biology open 4(8):1016–1023. https://doi.org/10.1242/bio.011858

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen X, Macara IG (2005) Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 7(3):262–269. https://doi.org/10.1038/ncb1226

    Article  CAS  PubMed  Google Scholar 

  79. Kaido T, Perez B, Yebra M, Hill J, Cirulli V, Hayek A, Montgomery AM (2004) Alphav-integrin utilization in human beta-cell adhesion, spreading, and motility. J Biol Chem 279(17):17731–17737. https://doi.org/10.1074/jbc.M308425200

    Article  CAS  PubMed  Google Scholar 

  80. Kaido T, Yebra M, Cirulli V, Montgomery AM (2004) Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha1beta1. J Biol Chem 279(51):53762–53769. https://doi.org/10.1074/jbc.M411202200

    Article  CAS  PubMed  Google Scholar 

  81. Bonner-Weir S (1988) Morphological evidence for pancreatic polarity of beta-cell within islets of Langerhans. Diabetes 37(5):616–621. https://doi.org/10.2337/diab.37.5.616

    Article  CAS  PubMed  Google Scholar 

  82. Virtanen I, Banerjee M, Palgi J, Korsgren O, Lukinius A, Thornell LE, Kikkawa Y, Sekiguchi K, Hukkanen M, Konttinen YT, Otonkoski T (2008) Blood vessels of human islets of Langerhans are surrounded by a double basement membrane. Diabetologia 51(7):1181–1191. https://doi.org/10.1007/s00125-008-0997-9

    Article  CAS  PubMed  Google Scholar 

  83. Otonkoski T, Banerjee M, Korsgren O, Thornell LE, Virtanen I (2008) Unique basement membrane structure of human pancreatic islets: implications for beta-cell growth and differentiation. Diabetes Obes Metab 10(Suppl 4):119–127. https://doi.org/10.1111/j.1463-1326.2008.00955.x

    Article  PubMed  Google Scholar 

  84. Benninger RKP, Kravets V (2022) The physiological role of β-cell heterogeneity in pancreatic islet function. Nat Rev Endocrinol 18(1):9–22. https://doi.org/10.1038/s41574-021-00568-0

    Article  CAS  PubMed  Google Scholar 

  85. Wojtusciszyn A, Armanet M, Morel P, Berney T, Bosco D (2008) Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia 51(10):1843–1852. https://doi.org/10.1007/s00125-008-1103-z

    Article  CAS  PubMed  Google Scholar 

  86. Schuit FC, In’t Veld PA, Pipeleers DG (1988) Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc Natl Acad Sci USA 85(11):3865–3869. https://doi.org/10.1073/pnas.85.11.3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoang Do O, Thorn P (2015) Insulin secretion from beta cells within intact islets: location matters. Clin Exp Pharmacol Physiol 42(4):406–414. https://doi.org/10.1111/1440-1681.12368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kelly C, McClenaghan NH, Flatt PR (2011) Role of islet structure and cellular interactions in the control of insulin secretion. Islets 3(2):41–47. https://doi.org/10.4161/isl.3.2.14805

    Article  PubMed  Google Scholar 

  89. Dahl U, Sjødin A, Semb H (1996) Cadherins regulate aggregation of pancreatic beta-cells in vivo. Development 122(9):2895–2902. https://doi.org/10.1242/dev.122.9.2895

    Article  CAS  PubMed  Google Scholar 

  90. Parnaud G, Gonelle-Gispert C, Morel P, Giovannoni L, Muller YD, Meier R, Borot S, Berney T, Bosco D (2011) Cadherin engagement protects human β-cells from apoptosis. Endocrinology 152(12):4601–4609. https://doi.org/10.1210/en.2011-1286

    Article  CAS  PubMed  Google Scholar 

  91. Bosco D, Rouiller DG, Halban PA (2007) Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity. J Endocrinol 194(1):21–29. https://doi.org/10.1677/joe-06-0169

    Article  CAS  PubMed  Google Scholar 

  92. Arous C, Wehrle-Haller B (2017) Role and impact of the extracellular matrix on integrin-mediated pancreatic β-cell functions. Biol Cell 109(6):223–237. https://doi.org/10.1111/boc.201600076

    Article  CAS  PubMed  Google Scholar 

  93. Hazama A, Hayashi S, Okada Y (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 437(1):31–35. https://doi.org/10.1007/s004240050742

    Article  CAS  PubMed  Google Scholar 

  94. Leitner JW, Sussman KE, Vatter AE, Schneider FH (1975) Adenine nucleotides in the secretory granule fraction of rat islets. Endocrinology 96(3):662–677. https://doi.org/10.1210/endo-96-3-662

    Article  CAS  PubMed  Google Scholar 

  95. Jacques-Silva MC, Correa-Medina M, Cabrera O, Rodriguez-Diaz R, Makeeva N, Fachado A, Diez J, Berman DM, Kenyon NS, Ricordi C, Pileggi A, Molano RD, Berggren P-O, Caicedo A (2010) ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci USA 107(14):6465–6470. https://doi.org/10.1073/pnas.0908935107

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fernandez-Alvarez J, Hillaire-Buys D, Loubatières-Mariani MM, Gomis R, Petit P (2001) P2 receptor agonists stimulate insulin release from human pancreatic islets. Pancreas 22(1):69–71. https://doi.org/10.1097/00006676-200101000-00012

    Article  CAS  PubMed  Google Scholar 

  97. Silva AM, Rodrigues RJ, Tomé AR, Cunha RA, Misler S, Rosário LM, Santos RM (2008) Electrophysiological and immunocytochemical evidence for P2X purinergic receptors in pancreatic beta cells. Pancreas 36(3):279–283. https://doi.org/10.1097/MPA.0b013e31815a8473

    Article  CAS  PubMed  Google Scholar 

  98. Avila A, Nguyen L, Rigo J-M (2013) Glycine receptors and brain development. Front Cell Neurosci. https://doi.org/10.3389/fncel.2013.00184

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yan-Do R, Duong E, Manning Fox JE, Dai X, Suzuki K, Khan S, Bautista A, Ferdaoussi M, Lyon J, Wu X, Cheley S, MacDonald PE, Braun M (2016) A glycine-insulin autocrine feedback loop enhances insulin secretion from human β-cells and is impaired in type 2 diabetes. Diabetes 65(8):2311–2321. https://doi.org/10.2337/db15-1272

    Article  CAS  PubMed  Google Scholar 

  100. Simpson N, Maffei A, Freeby M, Burroughs S, Freyberg Z, Javitch J, Leibel RL, Harris PE (2012) Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol Endocrinol (Baltimore, Md) 26(10):1757–1772. https://doi.org/10.1210/me.2012-1101

    Article  CAS  Google Scholar 

  101. Rubí B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P (2005) Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J Biol Chem 280(44):36824–36832. https://doi.org/10.1074/jbc.M505560200

    Article  CAS  PubMed  Google Scholar 

  102. Almaça J, Molina J, Menegaz D, Pronin AN, Tamayo A, Slepak V, Berggren PO, Caicedo A (2016) Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep 17(12):3281–3291. https://doi.org/10.1016/j.celrep.2016.11.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bennet H, Balhuizen A, Medina A, Dekker Nitert M, Ottosson Laakso E, Essén S, Spégel P, Storm P, Krus U, Wierup N, Fex M (2015) Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides 71:113–120. https://doi.org/10.1016/j.peptides.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  104. Michalik M, Erecińska M (1992) GABA in pancreatic islets: metabolism and function. Biochem Pharmacol 44(1):1–9. https://doi.org/10.1016/0006-2952(92)90030-m

    Article  CAS  PubMed  Google Scholar 

  105. Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR, Rorsman P (2010) Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes 59(7):1694–1701. https://doi.org/10.2337/db09-0797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Taneera J, ** Z, ** Y, Muhammed SJ, Zhang E, Lang S, Salehi A, Korsgren O, Renström E, Groop L, Birnir B (2012) γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes. Diabetologia 55(7):1985–1994. https://doi.org/10.1007/s00125-012-2548-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Caicedo A (2013) Paracrine and autocrine interactions in the human islet: more than meets the eye. Semin Cell Dev Biol 24(1):11–21. https://doi.org/10.1016/j.semcdb.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  108. Cryer PE, Davis SN, Shamoon H (2003) Hypoglycemia in diabetes. Diabetes Care 26(6):1902–1912. https://doi.org/10.2337/diacare.26.6.1902

    Article  CAS  PubMed  Google Scholar 

  109. Müller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH (2019) Glucagon-like peptide 1 (GLP-1). Molecular metabolism 30:72–130. https://doi.org/10.1016/j.molmet.2019.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Noguchi GM, Huising MO (2019) Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 1(12):1189–1201. https://doi.org/10.1038/s42255-019-0148-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Svendsen B, Larsen O, Gabe MBN, Christiansen CB, Rosenkilde MM, Drucker DJ, Holst JJ (2018) Insulin secretion depends on intra-islet glucagon signaling. Cell Rep 25(5):1127-1134.e1122. https://doi.org/10.1016/j.celrep.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  112. Gelling RW, Vuguin PM, Du XQ, Cui L, Rømer J, Pederson RA, Leiser M, Sørensen H, Holst JJ, Fledelius C, Johansen PB, Fleischer N, McIntosh CH, Nishimura E, Charron MJ (2009) Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass. Am J Physiol Endocrinol Metab 297(3):E695-707. https://doi.org/10.1152/ajpendo.00082.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sørensen H, Winzell MS, Brand CL, Fosgerau K, Gelling RW, Nishimura E, Ahren B (2006) Glucagon receptor knockout mice display increased insulin sensitivity and impaired beta-cell function. Diabetes 55(12):3463–3469. https://doi.org/10.2337/db06-0307

    Article  CAS  PubMed  Google Scholar 

  114. Rodriguez-Diaz R, Molano RD, Weitz JR, Abdulreda MH, Berman DM, Leibiger B, Leibiger IB, Kenyon NS, Ricordi C, Pileggi A, Caicedo A, Berggren P-O (2018) Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab 27(3):549-558.e544. https://doi.org/10.1016/j.cmet.2018.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Huypens P, Ling Z, Pipeleers D, Schuit F (2000) Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia 43(8):1012–1019. https://doi.org/10.1007/s001250051484

    Article  CAS  PubMed  Google Scholar 

  116. Capozzi ME, Svendsen B, Encisco SE, Lewandowski SL, Martin MD, Lin H, Jaffe JL, Coch RW, Haldeman JM, MacDonald PE, Merrins MJ, D’Alessio DA, Campbell JE (2019) β Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight. https://doi.org/10.1172/jci.insight.126742

    Article  PubMed  PubMed Central  Google Scholar 

  117. Edwards CM, Todd JF, Mahmoudi M, Wang Z, Wang RM, Ghatei MA, Bloom SR (1999) Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes 48(1):86–93. https://doi.org/10.2337/diabetes.48.1.86

    Article  CAS  PubMed  Google Scholar 

  118. Fehmann HC, Hering BJ, Wolf MJ, Brandhorst H, Brandhorst D, Bretzel RG, Federlin K, Göke B (1995) The effects of glucagon-like peptide-I (GLP-I) on hormone secretion from isolated human pancreatic islets. Pancreas 11(2):196–200. https://doi.org/10.1097/00006676-199508000-00014

    Article  CAS  PubMed  Google Scholar 

  119. Rodriguez-Diaz R, Dando R, Jacques-Silva MC, Fachado A, Molina J, Abdulreda MH, Ricordi C, Roper SD, Berggren P-O, Caicedo A (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 17(7):888–892. https://doi.org/10.1038/nm.2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tang SC, Baeyens L, Shen CN, Peng SJ, Chien HJ, Scheel DW, Chamberlain CE, German MS (2018) Human pancreatic neuro-insular network in health and fatty infiltration. Diabetologia 61(1):168–181. https://doi.org/10.1007/s00125-017-4409-x

    Article  CAS  PubMed  Google Scholar 

  121. Molina J, Rodriguez-Diaz R, Fachado A, Jacques-Silva MC, Berggren PO, Caicedo A (2014) Control of insulin secretion by cholinergic signaling in the human pancreatic islet. Diabetes 63(8):2714–2726. https://doi.org/10.2337/db13-1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhu L, Rossi M, Cohen A, Pham J, Zheng H, Dattaroy D, Mukaibo T, Melvin JE, Langel JL, Hattar S, Matschinsky FM, Appella DH, Doliba NM, Wess J (2019) Allosteric modulation of β-cell M3 muscarinic acetylcholine receptors greatly improves glucose homeostasis in lean and obese mice. Proc Natl Acad Sci USA 116(37):18684–18690. https://doi.org/10.1073/pnas.1904943116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rahier J, Wallon J, Loozen S, Lefevre A, Gepts W, Haot J (1983) The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab 56(3):441–444. https://doi.org/10.1210/jcem-56-3-441

    Article  CAS  PubMed  Google Scholar 

  124. Brereton MF, Vergari E, Zhang Q, Clark A (2015) Alpha-, Delta- and PP-cells: are they the architectural cornerstones of islet structure and co-ordination? J Histochem Cytochem 63(8):575–591. https://doi.org/10.1369/0022155415583535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Aragón F, Karaca M, Novials A, Maldonado R, Maechler P, Rubí B (2015) Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochem Biophys Acta 1850(2):343–351. https://doi.org/10.1016/j.bbagen.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  126. Kim W, Fiori JL, Shin YK, Okun E, Kim JS, Rapp PR, Egan JM (2014) Pancreatic polypeptide inhibits somatostatin secretion. FEBS Lett 588(17):3233–3239. https://doi.org/10.1016/j.febslet.2014.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Köhler M, Fachado A, Vieira E, Zierath JR, Kibbey R, Berman DM, Kenyon NS, Ricordi C, Caicedo A, Berggren PO (2008) Glutamate is a positive autocrine signal for glucagon release. Cell Metab 7(6):545–554. https://doi.org/10.1016/j.cmet.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna, Austria: 1996) 121(8):799–817. https://doi.org/10.1007/s00702-014-1180-8

    Article  CAS  Google Scholar 

  129. Bertrand G, Gross R, Puech R, Loubatières-Mariani MM, Bockaert J (1993) Glutamate stimulates glucagon secretion via an excitatory amino acid receptor of the AMPA subtype in rat pancreas. Eur J Pharmacol 237(1):45–50. https://doi.org/10.1016/0014-2999(93)90091-u

    Article  CAS  PubMed  Google Scholar 

  130. Cho JH, Chen L, Kim MH, Chow RH, Hille B, Koh DS (2010) Characteristics and functions of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors expressed in mouse pancreatic α-cells. Endocrinology 151(4):1541–1550. https://doi.org/10.1210/en.2009-0362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Uehara S, Muroyama A, Echigo N, Morimoto R, Otsuka M, Yatsushiro S, Moriyama Y (2004) Metabotropic glutamate receptor type 4 is involved in autoinhibitory cascade for glucagon secretion by alpha-cells of islet of Langerhans. Diabetes 53(4):998–1006. https://doi.org/10.2337/diabetes.53.4.998

    Article  CAS  PubMed  Google Scholar 

  132. Bertrand G, Puech R, Loubatieres-Mariani MM, Bockaert J (1995) Glutamate stimulates insulin secretion and improves glucose tolerance in rats. Am J Physiol 269(3 Pt 1):E551-556. https://doi.org/10.1152/ajpendo.1995.269.3.E551

    Article  CAS  PubMed  Google Scholar 

  133. Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S (1992) Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci U S A 89(1):251–255. https://doi.org/10.1073/pnas.89.1.251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Braun M, Ramracheya R, Amisten S, Bengtsson M, Moritoh Y, Zhang Q, Johnson PR, Rorsman P (2009) Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells. Diabetologia 52(8):1566–1578. https://doi.org/10.1007/s00125-009-1382-z

    Article  CAS  PubMed  Google Scholar 

  135. Zhang Q, Bengtsson M, Partridge C, Salehi A, Braun M, Cox R, Eliasson L, Johnson PR, Renström E, Schneider T, Berggren PO, Göpel S, Ashcroft FM, Rorsman P (2007) R-type Ca(2+)-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat Cell Biol 9(4):453–460. https://doi.org/10.1038/ncb1563

    Article  CAS  PubMed  Google Scholar 

  136. Kumar U, Sasi R, Suresh S, Patel A, Thangaraju M, Metrakos P, Patel SC, Patel YC (1999) Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes 48(1):77–85. https://doi.org/10.2337/diabetes.48.1.77

    Article  CAS  PubMed  Google Scholar 

  137. Strowski MZ, Parmar RM, Blake AD, Schaeffer JM (2000) Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 141(1):111–117. https://doi.org/10.1210/endo.141.1.7263

    Article  CAS  PubMed  Google Scholar 

  138. Date Y, Nakazato M, Hashiguchi S, Dezaki K, Mondal MS, Hosoda H, Kojima M, Kangawa K, Arima T, Matsuo H, Yada T, Matsukura S (2002) Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 51(1):124–129. https://doi.org/10.2337/diabetes.51.1.124

    Article  CAS  PubMed  Google Scholar 

  139. Dezaki K, Hosoda H, Kakei M, Hashiguchi S, Watanabe M, Kangawa K, Yada T (2004) Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in beta-cells: implication in the glycemic control in rodents. Diabetes 53(12):3142–3151. https://doi.org/10.2337/diabetes.53.12.3142

    Article  CAS  PubMed  Google Scholar 

  140. Kageyama H, Funahashi H, Hirayama M, Takenoya F, Kita T, Kato S, Sakurai J, Lee EY, Inoue S, Date Y, Nakazato M, Kangawa K, Shioda S (2005) Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul Pept 126(1–2):67–71. https://doi.org/10.1016/j.regpep.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  141. Granata R, Settanni F, Biancone L, Trovato L, Nano R, Bertuzzi F, Destefanis S, Annunziata M, Martinetti M, Catapano F, Ghè C, Isgaard J, Papotti M, Ghigo E, Muccioli G (2007) Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3’,5’-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling. Endocrinology 148(2):512–529. https://doi.org/10.1210/en.2006-0266

    Article  CAS  PubMed  Google Scholar 

  142. Colombo M, Gregersen S, **ao J, Hermansen K (2003) Effects of ghrelin and other neuropeptides (CART, MCH, orexin A and B, and GLP-1) on the release of insulin from isolated rat islets. Pancreas 27(2):161–166. https://doi.org/10.1097/00006676-200308000-00009

    Article  CAS  PubMed  Google Scholar 

  143. Wierup N, Yang S, McEvilly RJ, Mulder H, Sundler F (2004) Ghrelin is expressed in a novel endocrine cell type in develo** rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J Histochem Cytochem 52(3):301–310. https://doi.org/10.1177/002215540405200301

    Article  CAS  PubMed  Google Scholar 

  144. Cherubini C, Filippi S, Gizzi A, Loppini A (2015) Role of topology in complex functional networks of beta cells. Phys Rev E Stat Nonlin Soft Matter Phys 92(4):042702. https://doi.org/10.1103/PhysRevE.92.042702

    Article  CAS  PubMed  Google Scholar 

  145. Andrean D, Pedersen MG (2022) Machine learning provides insight into models of heterogeneous electrical activity in human beta-cells. Math Biosci 354:108927. https://doi.org/10.1016/j.mbs.2022.108927

    Article  CAS  PubMed  Google Scholar 

  146. Sherman A, Rinzel J, Keizer J (1988) Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophys J 54(3):411–425. https://doi.org/10.1016/s0006-3495(88)82975-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jo J, Kang H, Choi MY, Koh DS (2005) How noise and coupling induce bursting action potentials in pancreatic {beta}-cells. Biophys J 89(3):1534–1542. https://doi.org/10.1529/biophysj.104.053181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang M, Goforth P, Bertram R, Sherman A, Satin L (2003) The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models. Biophys J 84(5):2852–2870. https://doi.org/10.1016/s0006-3495(03)70014-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Marchetti P, Lupi R, Bugliani M, Kirkpatrick CL, Sebastiani G, Grieco FA, Del Guerra S, D’Aleo V, Piro S, Marselli L, Boggi U, Filipponi F, Tinti L, Salvini L, Wollheim CB, Purrello F, Dotta F (2012) A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55(12):3262–3272. https://doi.org/10.1007/s00125-012-2716-9

    Article  CAS  PubMed  Google Scholar 

  150. Johnston Natalie R, Mitchell Ryan K, Haythorne E, Pessoa Maria P, Semplici F, Ferrer J, Piemonti L, Marchetti P, Bugliani M, Bosco D, Berishvili E, Duncanson P, Watkinson M, Broichhagen J, Trauner D, Rutter Guy A, Hodson David J (2016) Beta cell hubs dictate pancreatic islet responses to glucose. Cell Metab 24(3):389–401. https://doi.org/10.1016/j.cmet.2016.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Szabat M, Page MM, Panzhinskiy E, Skovsø S, Mojibian M, Fernandez-Tajes J, Bruin JE, Bround MJ, Lee JT, Xu EE, Taghizadeh F, O’Dwyer S, van de Bunt M, Moon KM, Sinha S, Han J, Fan Y, Lynn FC, Trucco M, Borchers CH, Foster LJ, Nislow C, Kieffer TJ, Johnson JD (2016) Reduced insulin production relieves endoplasmic reticulum stress and induces β cell proliferation. Cell Metab 23(1):179–193. https://doi.org/10.1016/j.cmet.2015.10.016

    Article  CAS  PubMed  Google Scholar 

  152. Sterk M, Dolensek J, Skelin Klemen M, Krizancic Bombek L, Paradiz Leitgeb E, Kercmar J, Perc M, Slak Rupnik M, Stozer A, Gosak M (2023) Functional characteristics of hub and wave-initiator cells in beta cell networks. Biophys J 122(5):784–801. https://doi.org/10.1016/j.bpj.2023.01.039

    Article  CAS  PubMed  Google Scholar 

  153. Kravets V, Dwulet JM, Schleicher WE, Hodson DJ, Davis AM, Pyle L, Piscopio RA, Sticco-Ivins M, Benninger RKP (2022) Functional architecture of pancreatic islets identifies a population of first responder cells that drive the first-phase calcium response. PLoS Biol 20(9):e3001761. https://doi.org/10.1371/journal.pbio.3001761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Benninger RK, Hutchens T, Head WS, McCaughey MJ, Zhang M, Le Marchand SJ, Satin LS, Piston DW (2014) Intrinsic islet heterogeneity and gap junction coupling determine spatiotemporal Ca(2)(+) wave dynamics. Biophys J 107(11):2723–2733. https://doi.org/10.1016/j.bpj.2014.10.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM (2018) Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev 93(1):364–389. https://doi.org/10.1111/brv.12349

    Article  PubMed  Google Scholar 

  156. Lyttle BM, Li J, Krishnamurthy M, Fellows F, Wheeler MB, Goodyer CG, Wang R (2008) Transcription factor expression in the develo** human fetal endocrine pancreas. Diabetologia 51(7):1169–1180. https://doi.org/10.1007/s00125-008-1006-z

    Article  CAS  PubMed  Google Scholar 

  157. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23(12):1534–1541. https://doi.org/10.1038/nbt1163

    Article  CAS  PubMed  Google Scholar 

  158. Loh Kyle M, Ang Lay T, Zhang J, Kumar V, Ang J, Auyeong Jun Q, Lee Kian L, Choo Siew H, Lim Christina YY, Nichane M, Tan J, Noghabi Monireh S, Azzola L, Ng Elizabeth S, Durruthy-Durruthy J, Sebastiano V, Poellinger L, Elefanty Andrew G, Stanley Edouard G, Chen Q, Prabhakar S, Weissman Irving L, Lim B (2014) Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell 14(2):237–252. https://doi.org/10.1016/j.stem.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nostro MC, Sarangi F, Yang C, Holland A, Elefanty AG, Stanley EG, Greiner DL, Keller G (2015) Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem cell reports 4(4):591–604. https://doi.org/10.1016/j.stemcr.2015.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Korytnikov R, Nostro MC (2016) Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells. Methods 101:56–64. https://doi.org/10.1016/j.ymeth.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  161. Tehrani Z, Lin S (2011) Antagonistic interactions of hedgehog, Bmp and retinoic acid signals control zebrafish endocrine pancreas development. Development 138(4):631–640. https://doi.org/10.1242/dev.050450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park I-H, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G (2011) Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138(5):861–871. https://doi.org/10.1242/dev.055236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mfopou JK, Chen B, Mateizel I, Sermon K, Bouwens L (2010) Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology 138(7):2233-2245.e2214. https://doi.org/10.1053/j.gastro.2010.02.056

    Article  CAS  PubMed  Google Scholar 

  164. Memon B, Abdelalim EM (2022) Toward precision medicine with human pluripotent stem cells for diabetes. Stem Cells Transl Med 11(7):704–714. https://doi.org/10.1093/stcltm/szac030

    Article  PubMed  PubMed Central  Google Scholar 

  165. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YHC, Johnson JD, Kieffer TJ (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11):1121–1133. https://doi.org/10.1038/nbt.3033

    Article  CAS  PubMed  Google Scholar 

  166. Pagliuca Felicia W, Millman Jeffrey R, Gürtler M, Segel M, Van Dervort A, Ryu Jennifer H, Peterson Quinn P, Greiner D, Melton Douglas A (2014) Generation of functional human pancreatic β CELLS IN VITRO. Cell 159(2):428–439. https://doi.org/10.1016/j.cell.2014.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Aigha II, Abdelalim EM (2020) NKX6.1 transcription factor: a crucial regulator of pancreatic β cell development, identity, and proliferation. Stem Cell Res Ther 11(1):459. https://doi.org/10.1186/s13287-020-01977-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Aigha II, Memon B, Elsayed AK, Abdelalim EM (2018) Differentiation of human pluripotent stem cells into two distinct NKX6.1 populations of pancreatic progenitors. Stem Cell Res Ther 9(1):83. https://doi.org/10.1186/s13287-018-0834-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Memon B, Karam M, Al-Khawaga S, Abdelalim EM (2018) Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6.1. Stem Cell Res Ther 9(1):15. https://doi.org/10.1186/s13287-017-0759-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Velazco-Cruz L, Song J, Maxwell KG, Goedegebuure MM, Augsornworawat P, Hogrebe NJ, Millman JR (2019) Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep 12(2):351–365. https://doi.org/10.1016/j.stemcr.2018.12.012

    Article  CAS  Google Scholar 

  171. Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR (2020) Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 38(4):460–470. https://doi.org/10.1038/s41587-020-0430-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, Juang C, Li M-L, Nguyen VQ, Giacometti S, Puri S, **ng Y, Wang Y, Szot GL, Oberholzer J, Bhushan A, Hebrok M (2019) Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat Cell Biol 21(2):263–274. https://doi.org/10.1038/s41556-018-0271-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V, Blelloch R, Szot GL, Arvan P, Hebrok M (2015) Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 34(13):1759–1772. https://doi.org/10.15252/embj.201591058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JH-R, Harb G, Poh Y-C, Sintov E, Gürtler M, Pagliuca FW, Peterson QP, Melton DA (2019) Charting cellular identity during human in vitro β-cell differentiation. Nature 569(7756):368–373. https://doi.org/10.1038/s41586-019-1168-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hrvatin S, O’Donnell CW, Deng F, Millman JR, Pagliuca FW, DiIorio P, Rezania A, Gifford DK, Melton DA (2014) Differentiated human stem cells resemble fetal, not adult, β cells. Proc Natl Acad Sci 111(8):3038. https://doi.org/10.1073/pnas.1400709111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401. https://doi.org/10.1038/nbt1259

    Article  CAS  PubMed  Google Scholar 

  177. Rosado-Olivieri EA, Anderson K, Kenty JH, Melton DA (2019) YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells. Nat Commun 10(1):1464. https://doi.org/10.1038/s41467-019-09404-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ma Q, **ao Y, Xu W, Wang M, Li S, Yang Z, Xu M, Zhang T, Zhang ZN, Hu R, Su Q, Yuan F, **ao T, Wang X, He Q, Zhao J, Chen ZJ, Sheng Z, Chai M, Wang H, Shi W, Deng Q, Cheng X, Li W (2022) ZnT8 loss-of-function accelerates functional maturation of hESC-derived beta cells and resists metabolic stress in diabetes. Nat Commun 13(1):4142. https://doi.org/10.1038/s41467-022-31829-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bocian-Sobkowska J, Zabel M, Wozniak W, Surdyk-Zasada J (1999) Polyhormonal aspect of the endocrine cells of the human fetal pancreas. Histochem Cell Biol 112(2):147–153. https://doi.org/10.1007/s004180050401

    Article  CAS  PubMed  Google Scholar 

  180. Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J, Qing T, Sun X, Zhang P, Ding M, Li D, Deng H (2007) In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17(4):333–344. https://doi.org/10.1038/cr.2007.28

    Article  CAS  PubMed  Google Scholar 

  181. Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, Lam K, Peng LF, Schreiber SL, Rubin LL, Melton D (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5(4):258–265. https://doi.org/10.1038/nchembio.154

    Article  CAS  PubMed  Google Scholar 

  182. Riedel MJ, Asadi A, Wang R, Ao Z, Warnock GL, Kieffer TJ (2012) Immunohistochemical characterisation of cells co-producing insulin and glucagon in the develo** human pancreas. Diabetologia 55(2):372–381. https://doi.org/10.1007/s00125-011-2344-9

    Article  CAS  PubMed  Google Scholar 

  183. Md Moin AS, Dhawan S, Cory M, Butler PC, Rizza RA, Butler AE (2016) Increased frequency of hormone negative and polyhormonal endocrine cells in lean individuals with type 2 diabetes. J Clin Endocrinol Metab 101(10):3628–3636. https://doi.org/10.1210/jc.2016-2496

    Article  CAS  PubMed  Google Scholar 

  184. Bruin JE, Erener S, Vela J, Hu X, Johnson JD, Kurata HT, Lynn FC, Piret JM, Asadi A, Rezania A, Kieffer TJ (2014) Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 12(1):194–208. https://doi.org/10.1016/j.scr.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  185. Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O’Neil JJ, Kieffer TJ (2013) Enrichment of human embryonic stem cell-derived NKX61-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31(11):2432–2442. https://doi.org/10.1002/stem.1489

    Article  CAS  PubMed  Google Scholar 

  186. Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG, Richardson M, Carpenter MK, D’Amour KA, Kroon E, Moorman M, Baetge EE, Bang AG (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29(8):750–756. https://doi.org/10.1038/nbt.1931

    Article  CAS  PubMed  Google Scholar 

  187. Gao T, McKenna B, Li C, Reichert M, Nguyen J, Singh T, Yang C, Pannikar A, Doliba N, Zhang T, Stoffers DA, Edlund H, Matschinsky F, Stein R, Stanger BZ (2014) Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab 19(2):259–271. https://doi.org/10.1016/j.cmet.2013.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Rezania A, Riedel MJ, Wideman RD, Karanu F, Ao Z, Warnock GL, Kieffer TJ (2011) Production of functional glucagon-secreting α-cells from human embryonic stem cells. Diabetes 60(1):239–247. https://doi.org/10.2337/db10-0573

    Article  CAS  PubMed  Google Scholar 

  189. Basford CL, Prentice KJ, Hardy AB, Sarangi F, Micallef SJ, Li X, Guo Q, Elefanty AG, Stanley EG, Keller G, Allister EM, Nostro MC, Wheeler MB (2012) The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia 55(2):358–371. https://doi.org/10.1007/s00125-011-2335-x

    Article  CAS  PubMed  Google Scholar 

  190. Memon B, Younis I, Abubaker F, Abdelalim EM (2020) PDX1−/NKX61+ progenitors derived from human pluripotent stem cells as a novel source of insulin-secreting cells. Diabetes/Metab Res Rev 37(5):e3400. https://doi.org/10.1002/dmrr.3400

    Article  CAS  PubMed  Google Scholar 

  191. Petersen MBK, Azad A, Ingvorsen C, Hess K, Hansson M, Grapin-Botton A, Honoré C (2017) Single-cell gene expression analysis of a human ESC model of pancreatic endocrine development reveals different paths to β-cell differentiation. Stem cell reports 9(4):1246–1261. https://doi.org/10.1016/j.stemcr.2017.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Krentz NAJ, Lee MYY, Xu EE, Sproul SLJ, Maslova A, Sasaki S, Lynn FC (2018) Single-cell transcriptome profiling of mouse and hESC-derived pancreatic progenitors. Stem Cell Rep 11(6):1551–1564. https://doi.org/10.1016/j.stemcr.2018.11.008

    Article  CAS  Google Scholar 

  193. Ameri J, Borup R, Prawiro C, Ramond C, Schachter KA, Scharfmann R, Semb H (2017) Efficient generation of glucose-responsive beta cells from isolated GP2+ human pancreatic progenitors. Cell Rep 19(1):36–49. https://doi.org/10.1016/j.celrep.2017.03.032

    Article  CAS  PubMed  Google Scholar 

  194. Cogger KF, Sinha A, Sarangi F, McGaugh EC, Saunders D, Dorrell C, Mejia-Guerrero S, Aghazadeh Y, Rourke JL, Screaton RA, Grompe M, Streeter PR, Powers AC, Brissova M, Kislinger T, Nostro MC (2017) Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat Commun 8(1):331. https://doi.org/10.1038/s41467-017-00561-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jiang W, Sui X, Zhang D, Liu M, Ding M, Shi Y, Deng H (2011) CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem cells (Dayton, Ohio) 29(4):609–617. https://doi.org/10.1002/stem.608

    Article  CAS  PubMed  Google Scholar 

  196. Ramond C, Glaser N, Berthault C, Ameri J, Kirkegaard JS, Hansson M, Honoré C, Semb H, Scharfmann R (2017) Reconstructing human pancreatic differentiation by map** specific cell populations during development. Elife 6:e27564. https://doi.org/10.7554/eLife.27564

    Article  PubMed  PubMed Central  Google Scholar 

  197. Sugiyama T, Rodriguez RT, McLean GW, Kim SK (2007) Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci U S A 104(1):175–180. https://doi.org/10.1073/pnas.0609490104

    Article  CAS  PubMed  Google Scholar 

  198. Ramond C, Beydag-Tasöz BS, Azad A, van de Bunt M, Petersen MBK, Beer NL, Glaser N, Berthault C, Gloyn AL, Hansson M, McCarthy MI, Honoré C, Grapin-Botton A, Scharfmann R (2018) Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development. https://doi.org/10.1242/dev.165480

    Article  PubMed  PubMed Central  Google Scholar 

  199. Balboa D, Saarimäki-Vire J, Borshagovski D, Survila M, Lindholm P, Galli E, Eurola S, Ustinov J, Grym H, Huopio H, Partanen J, Wartiovaara K, Otonkoski T (2018) Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife. https://doi.org/10.7554/eLife.38519

    Article  PubMed  PubMed Central  Google Scholar 

  200. Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, Engquist EN, Trapnell C, Gifford DK, Melton DA (2019) Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep 27(8):2281-2291.e2285. https://doi.org/10.1016/j.celrep.2019.04.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Molakandov K, Berti DA, Beck A, Elhanani O, Walker MD, Soen Y, Yavriyants K, Zimerman M, Volman E, Toledo I, Erukhimovich A, Levy AM, Hasson A, Itskovitz-Eldor J, Chebath J, Revel M (2021) Selection for CD26(-) and CD49A(+) cells from pluripotent stem cells-derived islet-like clusters improves therapeutic activity in diabetic mice. Front Endocrinol 12:635405. https://doi.org/10.3389/fendo.2021.635405

    Article  Google Scholar 

  202. Scarl RT, Corbin KL, Vann NW, Smith HM, Satin LS, Sherman A, Nunemaker CS (2019) Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose. Cell Calcium 83:102081. https://doi.org/10.1016/j.ceca.2019.102081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Reissaus CA, Piston DW (2017) Reestablishment of glucose inhibition of glucagon secretion in small pseudoislets. Diabetes 66(4):960–969. https://doi.org/10.2337/db16-1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Benninger RKP, Head WS, Zhang M, Satin LS, Piston DW (2011) Gap junctions and other mechanisms of cell–cell communication regulate basal insulin secretion in the pancreatic islet. J Physiol 589(22):5453–5466. https://doi.org/10.1113/jphysiol.2011.218909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sharivkin R, Walker MD, Soen Y (2015) Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets. PLoS ONE 10(2):e0115100. https://doi.org/10.1371/journal.pone.0115100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dorrell C, Abraham SL, Lanxon-Cookson KM, Canaday PS, Streeter PR, Grompe M (2008) Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers. Stem Cell Res 1(3):183–194. https://doi.org/10.1016/j.scr.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  207. Gromada J, Brock B, Schmitz O, Rorsman P (2004) Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol 95(6):252–262. https://doi.org/10.1111/j.1742-7843.2004.t01-1-pto950502.x

    Article  CAS  PubMed  Google Scholar 

  208. van der Meulen T, Donaldson CJ, Cáceres E, Hunter AE, Cowing-Zitron C, Pound LD, Adams MW, Zembrzycki A, Grove KL, Huising MO (2015) Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat Med 21(7):769–776. https://doi.org/10.1038/nm.3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Koh D-S, Cho J-H, Chen L (2012) Paracrine interactions within islets of langerhans. J Mol Neurosci 48(2):429–440. https://doi.org/10.1007/s12031-012-9752-2

    Article  CAS  PubMed  Google Scholar 

  210. Marroqui L, Masini M, Merino B, Grieco FA, Millard I, Dubois C, Quesada I, Marchetti P, Cnop M, Eizirik DL (2015) Pancreatic α cells are resistant to metabolic stress-induced apoptosis in type 2 diabetes. EBioMedicine 2(5):378–385. https://doi.org/10.1016/j.ebiom.2015.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  211. Bonnet-Serrano F, Diedisheim M, Mallone R, Larger E (2018) Decreased α-cell mass and early structural alterations of the exocrine pancreas in patients with type 1 diabetes: An analysis based on the nPOD repository. PLoS ONE 13(1):e0191528. https://doi.org/10.1371/journal.pone.0191528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hogrebe NJ, Maxwell KG, Augsornworawat P, Millman JR (2021) Generation of insulin-producing pancreatic β cells from multiple human stem cell lines. Nat Protoc 16(9):4109–4143. https://doi.org/10.1038/s41596-021-00560-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from Qatar Biomedical Research Institute (QBRI) (Grant No. IGP3 and QBRI-HSCI Project 1).

Funding

Open Access funding provided by the Qatar National Library.

Author information

Authors and Affiliations

Authors

Contributions

NA, ASM contributed to write the manuscript and prepared the figures. EMA contributed to the conception and design of the study and the final editing of the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Essam M. Abdelalim.

Ethics declarations

Conflict of interest

The authors declare that this article content has no conflict of interest.

Ethical approval and consent to participate

Not applicable. This study does not involve experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldous, N., Moin, A.S.M. & Abdelalim, E.M. Pancreatic β-cell heterogeneity in adult human islets and stem cell-derived islets. Cell. Mol. Life Sci. 80, 176 (2023). https://doi.org/10.1007/s00018-023-04815-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04815-7

Keywords