Log in

TAZ promotes PDX1-mediated insulinogenesis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Transcriptional co-activator with PDZ-binding motif (TAZ) is a key mediator of the Hippo signaling pathway and regulates structural and functional homeostasis in various tissues. TAZ activation is associated with the development of pancreatic cancer in humans, but it is unclear whether TAZ directly affects the structure and function of the pancreas. So we sought to identify the TAZ function in the normal pancreas. TAZ defect caused structural changes in the pancreas, particularly islet cell shrinkage and decreased insulin production and β-cell markers expression, leading to hyperglycemia. Interestingly, TAZ physically interacted with the pancreatic and duodenal homeobox 1 (PDX1), a key insulin transcription factor, through the N-terminal domain of TAZ and the homeodomain of PDX1. TAZ deficiency decreased the DNA-binding and transcriptional activity of PDX1, whereas TAZ overexpression promoted PDX1 activity and increased insulin production even in a low glucose environment. Indeed, high glucose increased insulin production by turning off the Hippo pathway and inducing TAZ activation in pancreatic β-cells. Ectopic TAZ overexpression along with PDX1 activation was sufficient to produce insulin in non-β-cells. TAZ deficiency impaired the mesenchymal stem cell differentiation into insulin-producing cells (IPCs), whereas TAZ recovery restored normal IPCs differentiation. Compared to WT control, body weight increased in TAZ-deficient mice with age and even more with a high-fat diet (HFD). TAZ deficiency significantly exacerbated HFD-induced glucose intolerance and insulin resistance. Therefore, TAZ deficiency impaired pancreatic insulin production, causing hyperglycemia and exacerbating HFD-induced insulin resistance, indicating that TAZ may have a beneficial effect in treating insulin deficiency in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated during the current study, and all data are provided in full in the results section of this paper.

Abbreviations

ChIP:

Chromatin immunoprecipitation

FoxA2:

Forkhead box A2

GCG:

Glucagon

Glut:

Glucose transporter

GSIS:

Glucose-stimulated insulin secretion

GTT:

Glucose tolerance test

HFD:

High-fat diet

INS:

Insulin

ITT:

Insulin tolerance test

IPCs:

Insulin-producing cells

KO:

Knockout

LATS:

Large tumor suppressor

MSC:

Mesenchymal stem cell

MST:

Mammalian sterile 20-like

NCD:

Normal chow diet

NFAT:

Nuclear factor of activated T cells

NR4A1:

Nuclear receptor 4A1

PAX6:

Paired box protein 6

PDX1:

Pancreatic duodenal homeobox 1

P-KO:

Pancreas-specific KO

PPARγ:

Peroxisome proliferator-activated receptor γ

RUNX:

Runt-related transcription factor

SI:

Stimulation index

TAZ:

Transcriptional co-activator with PDZ-binding motif

TEAD:

TEA domain transcription factor

WT:

Wild type

YAP:

Yes-associated protein

References

  1. Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309:1074–1078. https://doi.org/10.1126/science.1110955

    Article  CAS  PubMed  Google Scholar 

  2. Jeong H, Bae S, An SY, Byun MR, Hwang JH, Yaffe MB, Hong JH, Hwang ES (2010) TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB J 24:3310–3320. https://doi.org/10.1096/fj.09-151324

    Article  CAS  PubMed  Google Scholar 

  3. Jeong MG, Kim HK, Hwang ES (2021) The essential role of TAZ in normal tissue homeostasis. Arch Pharm Res 44:253–262. https://doi.org/10.1007/s12272-021-01322-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jang EJ, Jeong H, Han KH, Kwon HM, Hong JH, Hwang ES (2012) TAZ suppresses NFAT5 activity through tyrosine phosphorylation. Mol Cell Biol 32:4925–4932. https://doi.org/10.1128/MCB.00392-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeong MG, Song H, Shin JH, Jeong H, Kim HK, Hwang ES (2017) Transcriptional co-activator with PDZ-binding motif is required to sustain testicular function on aging. Aging Cell 16:1035–1042. https://doi.org/10.1111/acel.12631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shin JH, Lee G, Jeong MG, Kim HK, Won HY, Choi Y, Lee JH, Nam M, Choi CS, Hwang GS, Hwang ES (2020) Transcriptional co-activator with PDZ-binding motif suppresses the expression of steroidogenic enzymes by nuclear receptor 4 A1 in Leydig cells. FASEB J 34:5332–5347. https://doi.org/10.1096/fj.201900695RRRR

    Article  CAS  PubMed  Google Scholar 

  7. Lin KC, Park HW, Guan KL (2017) Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem Sci 42:862–872. https://doi.org/10.1016/j.tibs.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holden JK, Cunningham CN (2018) Targeting the Hippo pathway and cancer through the TEAD family of transcription factors. Cancers (Basel). https://doi.org/10.3390/cancers10030081

    Article  Google Scholar 

  9. Konishi T, Schuster RM, Lentsch AB (2018) Proliferation of hepatic stellate cells, mediated by YAP and TAZ, contributes to liver repair and regeneration after liver ischemia/reperfusion injury. Am J Physiol Gastrointest Liver Physiol 314:G471–G482. https://doi.org/10.1152/ajpgi.00153.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yui S, Azzolin L, Maimets M, Pedersen MT, Fordham RP, Hansen SL, Larsen HL, Guiu J, Alves MRP, Rundsten CF, Johansen JV, Li Y, Madsen CD, Nakamura T, Watanabe M, Nielsen OH, Schweiger PJ, Piccolo S, Jensen KB (2018) YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22:35-49 e37. https://doi.org/10.1016/j.stem.2017.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim AR, Park JI, Oh HT, Kim KM, Hwang JH, Jeong MG, Kim EH, Hwang ES, Hong JH (2019) TAZ stimulates liver regeneration through interleukin-6-induced hepatocyte proliferation and inhibition of cell death after liver injury. FASEB J 33:5914–5923. https://doi.org/10.1096/fj.201801256RR

    Article  PubMed  Google Scholar 

  12. Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S, **ong Y, Lei QY, Guan KL (2009) TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem 284:13355–13362. https://doi.org/10.1074/jbc.M900843200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, Zeng Q, Hong W (2008) A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68:2592–2598. https://doi.org/10.1158/0008-5472.CAN-07-2696

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Z, Hao Y, Liu N, Raptis L, Tsao MS, Yang X (2011) TAZ is a novel oncogene in non-small cell lung cancer. Oncogene 30:2181–2186. https://doi.org/10.1038/onc.2010.606

    Article  CAS  PubMed  Google Scholar 

  15. Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G, Benedetto AD, Todaro M, Stassi G, Sperati F, Amabile MI, Pilozzi E, Patrizii M, Biffoni M, Maugeri-Sacca M, Piccolo S, De Maria R (2015) TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34:681–690. https://doi.org/10.1038/onc.2014.5

    Article  CAS  PubMed  Google Scholar 

  16. Pocaterra A, Romani P, Dupont S (2020) YAP/TAZ functions and their regulation at a glance. J Cell Sci. https://doi.org/10.1242/jcs.230425

    Article  PubMed  Google Scholar 

  17. Da Silva Xavier G (2018) The cells of the Islets of Langerhans. J Clin Med. https://doi.org/10.3390/jcm7030054

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee EK, Gorospe M (2010) Minireview: posttranscriptional regulation of the insulin and insulin-like growth factor systems. Endocrinology 151:1403–1408. https://doi.org/10.1210/en.2009-1123

    Article  CAS  PubMed  Google Scholar 

  19. Docherty HM, Hay CW, Ferguson LA, Barrow J, Durward E, Docherty K (2005) Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter. Biochem J 389:813–820. https://doi.org/10.1042/BJ20041891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gannon M, Ables ET, Crawford L, Lowe D, Offield MF, Magnuson MA, Wright CV (2008) Pdx-1 function is specifically required in embryonic beta cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol 314:406–417. https://doi.org/10.1016/j.ydbio.2007.10.038

    Article  CAS  PubMed  Google Scholar 

  21. Gao T, McKenna B, Li C, Reichert M, Nguyen J, Singh T, Yang C, Pannikar A, Doliba N, Zhang T, Stoffers DA, Edlund H, Matschinsky F, Stein R, Stanger BZ (2014) Pdx1 maintains beta cell identity and function by repressing an alpha cell program. Cell Metab 19:259–271. https://doi.org/10.1016/j.cmet.2013.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor BL, Liu FF, Sander M (2013) Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep 4:1262–1275. https://doi.org/10.1016/j.celrep.2013.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thorens B (2015) GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58:221–232. https://doi.org/10.1007/s00125-014-3451-1

    Article  CAS  PubMed  Google Scholar 

  24. Lantz KA, Vatamaniuk MZ, Brestelli JE, Friedman JR, Matschinsky FM, Kaestner KH (2004) Foxa2 regulates multiple pathways of insulin secretion. J Clin Investig 114:512–520. https://doi.org/10.1172/JCI21149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gosmain Y, Katz LS, Masson MH, Cheyssac C, Poisson C, Philippe J (2012) Pax6 is crucial for beta-cell function, insulin biosynthesis, and glucose-induced insulin secretion. Mol Endocrinol 26:696–709. https://doi.org/10.1210/me.2011-1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ardestani A, Lupse B, Maedler K (2018) Hippo signaling: key emerging pathway in cellular and whole-body metabolism. Trends Endocrinol Metab 29:492–509. https://doi.org/10.1016/j.tem.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  27. Ardestani A, Maedler K (2018) The Hippo signaling pathway in pancreatic beta-cells: functions and regulations. Endocr Rev 39:21–35. https://doi.org/10.1210/er.2017-00167

    Article  PubMed  Google Scholar 

  28. Rosado-Olivieri EA, Anderson K, Kenty JH, Melton DA (2019) YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing beta cells. Nat Commun 10:1464. https://doi.org/10.1038/s41467-019-09404-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan T, Rafizadeh S, Azizi Z, Lupse B, Gorrepati KDD, Awal S, Oberholzer J, Maedler K, Ardestani A (2016) Proproliferative and antiapoptotic action of exogenously introduced YAP in pancreatic beta cells. JCI Insight 1:e86326. https://doi.org/10.1172/jci.insight.86326

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yuan T, Annamalai K, Naik S, Lupse B, Geravandi S, Pal A, Dobrowolski A, Ghawali J, Ruhlandt M, Gorrepati KDD, Azizi Z, Lim DS, Maedler K, Ardestani A (2021) The Hippo kinase LATS2 impairs pancreatic beta-cell survival in diabetes through the mTORC1-autophagy axis. Nat Commun 12:4928. https://doi.org/10.1038/s41467-021-25145-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morvaridi S, Dhall D, Greene MI, Pandol SJ, Wang Q (2015) Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis. Sci Rep 5:16759. https://doi.org/10.1038/srep16759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gruber R, Panayiotou R, Nye E, Spencer-Dene B, Stamp G, Behrens A (2016) YAP1 and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling. Gastroenterology 151:526–539. https://doi.org/10.1053/j.gastro.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  33. Wu Y, Aegerter P, Nipper M, Ramjit L, Liu J, Wang P (2021) Hippo signaling pathway in pancreas development. Front Cell Dev Biol 9:663906. https://doi.org/10.3389/fcell.2021.663906

    Article  PubMed  PubMed Central  Google Scholar 

  34. Freemark M, Avril I, Fleenor D, Driscoll P, Petro A, Opara E, Kendall W, Oden J, Bridges S, Binart N, Breant B, Kelly PA (2002) Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 143:1378–1385. https://doi.org/10.1210/endo.143.4.8722

    Article  CAS  PubMed  Google Scholar 

  35. Krishnamurthy M, Ayazi F, Li J, Lyttle AW, Woods M, Wu Y, Yee SP, Wang R (2007) c-Kit in early onset of diabetes: a morphological and functional analysis of pancreatic beta-cells in c-KitW-v mutant mice. Endocrinology 148:5520–5530. https://doi.org/10.1210/en.2007-0387

    Article  CAS  PubMed  Google Scholar 

  36. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2(delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 3:71–85

    Google Scholar 

  37. Vinue A, Gonzalez-Navarro H (2015) Glucose and insulin tolerance tests in the mouse. Methods Mol Biol 1339:247–254. https://doi.org/10.1007/978-1-4939-2929-0_17

    Article  CAS  PubMed  Google Scholar 

  38. Jung JG, Yi SA, Choi SE, Kang Y, Kim TH, Jeon JY, Bae MA, Ahn JH, Jeong H, Hwang ES, Lee KW (2015) TM-25659-induced activation of fgf21 level decreases insulin resistance and inflammation in skeletal muscle via GCN2 pathways. Mol Cells 38:1037–1043. https://doi.org/10.14348/molcells.2015.0100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li DS, Yuan YH, Tu HJ, Liang QL, Dai LJ (2009) A protocol for islet isolation from mouse pancreas. Nat Protoc 4:1649–1652. https://doi.org/10.1038/nprot.2009.150

    Article  CAS  PubMed  Google Scholar 

  40. Kim TH, Kim HK, Hwang ES (2017) Novel anti-adipogenic activity of anti-malarial amodiaquine through suppression of PPARgamma activity. Arch Pharm Res 40:1336–1343. https://doi.org/10.1007/s12272-017-0965-3

    Article  CAS  PubMed  Google Scholar 

  41. Gabr MM, Sobh MM, Zakaria MM, Refaie AF, Ghoneim MA (2008) Transplantation of insulin-producing clusters derived from adult bone marrow stem cells to treat diabetes in rats. Exp Clin Transplant 6:236–243. https://doi.org/10.3727/096368910X522270

    Article  PubMed  Google Scholar 

  42. Czubak P, Bojarska-Junak A, Tabarkiewicz J, Putowski L (2014) A modified method of insulin producing cells’ generation from bone marrow-derived mesenchymal stem cells. J Diabetes Res 2014:628591. https://doi.org/10.1155/2014/628591

    Article  PubMed  PubMed Central  Google Scholar 

  43. Legro RS, Finegood D, Dunaif A (1998) A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 83:2694–2698. https://doi.org/10.1210/jcem.83.8.5054

    Article  CAS  PubMed  Google Scholar 

  44. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H (1998) Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 12:1763–1768. https://doi.org/10.1101/gad.12.12.1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Dou Z (2014) Under a nonadherent state, bone marrow mesenchymal stem cells can be efficiently induced into functional islet-like cell clusters to normalize hyperglycemia in mice: a control study. Stem Cell Res Ther 5:66. https://doi.org/10.1186/scrt455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A (2015) Pancreatic beta-cell identity, glucose sensing and the control of insulin secretion. Biochem J 466:203–218. https://doi.org/10.1042/BJ20141384

    Article  CAS  PubMed  Google Scholar 

  47. Gao T, Zhou D, Yang C, Singh T, Penzo-Mendez A, Maddipati R, Tzatsos A, Bardeesy N, Avruch J, Stanger BZ (2013) Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology 144:1543–1553, e1541. https://doi.org/10.1053/j.gastro.2013.02.037

    Article  CAS  PubMed  Google Scholar 

  48. George NM, Day CE, Boerner BP, Johnson RL, Sarvetnick NE (2012) Hippo signaling regulates pancreas development through inactivation of Yap. Mol Cell Biol 32:5116–5128. https://doi.org/10.1128/MCB.01034-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ardestani A, Tremblay MS, Shen W, Maedler K (2019) Neratinib is an MST1 inhibitor and restores pancreatic beta-cells in diabetes. Cell Death Discov 5:149. https://doi.org/10.1038/s41420-019-0232-0

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ardestani A, Paroni F, Azizi Z, Kaur S, Khobragade V, Yuan T, Frogne T, Tao W, Oberholzer J, Pattou F, Conte JK, Maedler K (2014) MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat Med 20:385–397. https://doi.org/10.1038/nm.3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee J, Liu R, Kim BS, Zhang Y, Li F, Jagannathan R, Yang P, Negi V, Perez-Garcia EM, Saha PK, Sabek O, Coarfa C, Creighton CJ, Huising MO, Bottino R, Ma K, Moulik M, Yechoor VK (2020) Tead1 reciprocally regulates adult β-cell proliferation and function to maintain glucose homeostasis. bioRxiv. https://doi.org/10.1101/2020.03.05.979450

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu J, Gao M, Nipper M, Deng J, Sharkey FE, Johnson RL, Crawford HC, Chen Y, Wang P (2019) Activation of the intrinsic fibroinflammatory program in adult pancreatic acinar cells triggered by Hippo signaling disruption. PLoS Biol 17:e3000418. https://doi.org/10.1371/journal.pbio.3000418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ansari D, Ohlsson H, Althini C, Bauden M, Zhou Q, Hu D, Andersson R (2019) The Hippo signaling pathway in pancreatic cancer. Anticancer Res 39:3317–3321. https://doi.org/10.21873/anticanres.13474

    Article  CAS  PubMed  Google Scholar 

  54. Czech MP (2017) Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23:804–814. https://doi.org/10.1038/nm.4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ, Advancing Care for Type 1 Diabetes and Obesity Network (2018) Obesity in type 1 diabetes: pathophysiology, clinical impact, and mechanisms. Endocr Rev 39:629–663. https://doi.org/10.1210/er.2017-00191

    Article  PubMed  Google Scholar 

  56. Pozzilli P, Buzzetti R (2007) A new expression of diabetes: double diabetes. Trends Endocrinol Metab 18:52–57. https://doi.org/10.1016/j.tem.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  57. Khawandanah J (2019) Double or hybrid diabetes: a systematic review on disease prevalence, characteristics and risk factors. Nutr Diabetes 9:33. https://doi.org/10.1038/s41387-019-0101-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Polsky S, Ellis SL (2015) Obesity, insulin resistance, and type 1 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 22:277–282. https://doi.org/10.1097/MED.0000000000000170

    Article  CAS  PubMed  Google Scholar 

  59. Pathak V, Pathak NM, O’Neill CL, Guduric-Fuchs J, Medina RJ (2019) Therapies for type 1 diabetes: current scenario and future perspectives. Clin Med Insights Endocrinol Diabetes 12:1179551419844521. https://doi.org/10.1177/1179551419844521

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hwang JH, Kim AR, Kim KM, Il Park J, Oh HT, Moon SA, Byun MR, Jeong H, Kim HK, Yaffe MB, Hwang ES, Hong JH (2019) TAZ couples Hippo/Wnt signalling and insulin sensitivity through Irs1 expression. Nat Commun 10:421. https://doi.org/10.1038/s41467-019-08287-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Park GH, Jeong H, Jeong MG, Jang EJ, Bae MA, Lee YL, Kim NJ, Hong JH, Hwang ES (2014) Novel TAZ modulators enhance myogenic differentiation and muscle regeneration. Br J Pharmacol 171:4051–4061. https://doi.org/10.1111/bph.12755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jang EJ, Jeong H, Kang JO, Kim NJ, Kim MS, Choi SH, Yoo SE, Hong JH, Bae MA, Hwang ES (2012) TM-25659 enhances osteogenic differentiation and suppresses adipogenic differentiation by modulating the transcriptional co-activator TAZ. Br J Pharmacol 165:1584–1594. https://doi.org/10.1111/j.1476-5381.2011.01664.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Jeong-Ho Hong, Hun-Joo Ha, Soo-Young Lee, and Kong-Joo Lee for providing TAZ expression vectors, human insulin, Plat-E, and INS-1 cells, respectively. This work was supported by grants from the National Research Foundation of South Korea (2018R1A5A2025286 and 2020R1A2C2004679) and Korea Basic Science Institute (2021R1A6C101A442).

Author information

Authors and Affiliations

Authors

Contributions

MGJ performed most in vitro and in vivo experiments, and HKK performed immunohistochemistry. GL conducted the in vivo experiments, and HYW performed the retroviral transduction and established stable cell lines. DHY contributed to the immunoprecipitation and immunoblot analysis. ESH designed all the experiments and prepared the manuscript for publication.

Corresponding author

Correspondence to Eun Sook Hwang.

Ethics declarations

Conflict of interest

The authors declare no competing interests regarding this manuscript.

Ethical standards

All animal care and experiments were approved by the International Animal Care and Use Committee (IACUC; 2010-13-3, 2015-01-020, 17-013, and 19-031) at Ewha Womans University and were conducted according to the IACUC guidelines. The study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, M.G., Kim, H.K., Lee, G. et al. TAZ promotes PDX1-mediated insulinogenesis. Cell. Mol. Life Sci. 79, 186 (2022). https://doi.org/10.1007/s00018-022-04216-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04216-2

Keywords

Navigation