Log in

Molecular mechanisms of doxorubicin-induced cardiotoxicity: novel roles of sirtuin 1-mediated signaling pathways

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX) is an anthracycline chemotherapy drug used in the treatment of various types of cancer. However, short-term and long-term cardiotoxicity limits the clinical application of DOX. Currently, dexrazoxane is the only approved treatment by the United States Food and Drug Administration to prevent DOX-induced cardiotoxicity. However, a recent study found that pre-treatment with dexrazoxane could not fully improve myocardial toxicity of DOX. Therefore, further targeted cardioprotective prophylaxis and treatment strategies are an urgent requirement for cancer patients receiving DOX treatment to reduce the occurrence of cardiotoxicity. Accumulating evidence manifested that Sirtuin 1 (SIRT1) could play a crucially protective role in heart diseases. Recently, numerous studies have concentrated on the role of SIRT1 in DOX-induced cardiotoxicity, which might be related to the activity and deacetylation of SIRT1 downstream targets. Therefore, the aim of this review was to summarize the recent advances related to the protective effects, mechanisms, and deficiencies in clinical application of SIRT1 in DOX-induced cardiotoxicity. Also, the pharmaceutical preparations that activate SIRT1 and affect DOX-induced cardiotoxicity have been listed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gergely S, Hegedus C, Lakatos P, Kovacs K, Gaspar R, Csont T, Virag L (2015) High throughput screening identifies a novel compound protecting cardiomyocytes from doxorubicin-induced damage. Oxid Med Cell Longev 2015:178513. https://doi.org/10.1155/2015/178513

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x

    Article  CAS  PubMed  Google Scholar 

  3. Baech J, Hansen SM et al (2018) Cumulative anthracycline exposure and risk of cardiotoxicity; a Danish nationwide cohort study of 2440 lymphoma patients treated with or without anthracyclines. Br J Haematol 183(5):717–726. https://doi.org/10.1111/bjh.15603

    Article  CAS  PubMed  Google Scholar 

  4. Narayan HK, Finkelman B, French B, Plappert T, Hyman D, Smith AM, Margulies KB, Ky B (2017) Detailed echocardiographic phenoty** in breast cancer patients: associations with ejection fraction decline, recovery, and heart failure symptoms over 3 years of follow-up. Circulation 135(15):1397–1412. https://doi.org/10.1161/CIRCULATIONAHA.116.023463

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vejpongsa P, Yeh ET (2014) Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol 64(9):938–945. https://doi.org/10.1016/j.jacc.2014.06.1167

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Wang M, Liu J, Ye J, Jiang H, Xu Y, Ye D, Wan J (2018) Inhibition of TRPA1 attenuates doxorubicin-induced acute cardiotoxicity by suppressing oxidative stress, the inflammatory response, and endoplasmic reticulum stress. Oxid Med Cell Longev 2018:5179468. https://doi.org/10.1155/2018/5179468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang X, Wang S, Wang L, Ceylan AF, Ren J, Zhang Y (2020) Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol Res 157:104846. https://doi.org/10.1016/j.phrs.2020.104846

    Article  CAS  PubMed  Google Scholar 

  8. Llach A, Mazevet M et al (2019) Progression of excitation-contraction coupling defects in doxorubicin cardiotoxicity. J Mol Cell Cardiol 126:129–139. https://doi.org/10.1016/j.yjmcc.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  9. Cunha-Oliveira T, Ferreira LL, Coelho AR, Deus CM, Oliveira PJ (2018) Doxorubicin triggers bioenergetic failure and p53 activation in mouse stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 348:1–13. https://doi.org/10.1016/j.taap.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Li C et al (2019) Tanshinone IIA restores dynamic balance of autophagosome/autolysosome in doxorubicin-induced cardiotoxicity via targeting beclin1/LAMP1. Cancers (Basel) 11(7):190. https://doi.org/10.3390/cancers11070910

    Article  Google Scholar 

  11. Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Sergi C, Keschrumrus V, Churko JM, Granzier H, Schulz R (2020) MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodeling. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa017

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li J, Chang HM, Banchs J, Araujo DM, Hassan SA, Wagar EA, Yeh ETH, Meng QH (2020) Detection of subclinical cardiotoxicity in sarcoma patients receiving continuous doxorubicin infusion or pre-treatment with dexrazoxane before bolus doxorubicin. Cardiooncology 6:1. https://doi.org/10.1186/s40959-019-0056-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dolinsky VW (2017) The role of sirtuins in mitochondrial function and doxorubicin-induced cardiac dysfunction. Biol Chem 398(9):955–974. https://doi.org/10.1515/hsz-2016-0316

    Article  CAS  PubMed  Google Scholar 

  14. Skulachev VP (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J Alzheimers Dis 28(2):283–289. https://doi.org/10.3233/jad-2011-111391

    Article  CAS  PubMed  Google Scholar 

  15. Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261(7):3060–3067

    Article  CAS  PubMed  Google Scholar 

  16. Cappetta D, De Angelis A et al (2017) Oxidative stress and cellular response to doxorubicin: a common factor in the complex milieu of anthracycline cardiotoxicity. Oxid Med Cell Longev 2017:1521020. https://doi.org/10.1155/2017/1521020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qi W, Boliang W, **aoxi T, Guoqiang F, Jianbo X, Gang W (2020) Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother 122:109547. https://doi.org/10.1016/j.biopha.2019.109547

    Article  CAS  PubMed  Google Scholar 

  18. Lin J, Fang L, Li H, Li Z, Lyu L, Wang H, **ao J (2019) Astragaloside IV alleviates doxorubicin induced cardiomyopathy by inhibiting NADPH oxidase derived oxidative stress. Eur J Pharmacol 859:172490. https://doi.org/10.1016/j.ejphar.2019.172490

    Article  CAS  PubMed  Google Scholar 

  19. Chen J, Zhang S et al (2020) Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci 249:117498. https://doi.org/10.1016/j.lfs.2020.117498

    Article  CAS  PubMed  Google Scholar 

  20. Hwang J-w, Yao H, Caito S, Sundar IK, Rahman I (2013) Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radical Biol Med 61:95–110. https://doi.org/10.1016/j.freeradbiomed.2013.03.015

    Article  CAS  Google Scholar 

  21. Quagliariello V, Vecchione R et al (2018) Cardioprotective effects of nanoemulsions loaded with anti-inflammatory nutraceuticals against doxorubicin-induced cardiotoxicity. Nutrients 10(9):1304. https://doi.org/10.3390/nu10091304

    Article  CAS  PubMed Central  Google Scholar 

  22. Zhang YJ, Huang H, Liu Y, Kong B, Wang G (2019) MD-1 deficiency accelerates myocardial inflammation and apoptosis in doxorubicin-induced cardiotoxicity by activating the TLR4/MAPKs/nuclear factor kappa B (NF-kappaB) signaling pathway. Med Sci Monit 25:7898–7907. https://doi.org/10.12659/MSM.919861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun Z, Lu W, Lin N, Lin H, Zhang J, Ni T, Meng L, Zhang C, Guo H (2020) Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem Pharmacol 175:113888. https://doi.org/10.1016/j.bcp.2020.113888

    Article  CAS  PubMed  Google Scholar 

  24. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159. https://doi.org/10.1016/j.cell.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheung KG, Cole LK, **ang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW (2015) Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem 290(17):10981–10993. https://doi.org/10.1074/jbc.M114.607960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Songbo M, Lang H, **nyong C, Bin X, ** Z, Liang S (2019) Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 307:41–48. https://doi.org/10.1016/j.toxlet.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  27. Oliveira PJ, Wallace KB (2006) Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats—relevance for mitochondrial dysfunction. Toxicology 220(2–3):160–168. https://doi.org/10.1016/j.tox.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  28. Kwong JQ, Molkentin JD (2015) Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 21(2):206–214. https://doi.org/10.1016/j.cmet.2014.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dhingra R, Guberman M, Rabinovich-Nikitin I, Gerstein J, Margulets V, Gang H, Madden N, Thliveris J, Kirshenbaum LA (2020) Impaired NF-κB signalling underlies cyclophilin D-mediated mitochondrial permeability transition pore opening in doxorubicin cardiomyopathy. Cardiovasc Res 116(6):1161–1174. https://doi.org/10.1093/cvr/cvz240

    Article  CAS  PubMed  Google Scholar 

  30. Catanzaro MP, Weiner A et al (2019) Doxorubicin-induced cardiomyocyte death is mediated by unchecked mitochondrial fission and mitophagy. FASEB J 33(10):11096–11108. https://doi.org/10.1096/fj.201802663R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  32. Fu HY, Sanada S et al (2016) Chemical endoplasmic reticulum chaperone alleviates doxorubicin-induced cardiac dysfunction. Circ Res 118(5):798–809. https://doi.org/10.1161/circresaha.115.307604

    Article  CAS  PubMed  Google Scholar 

  33. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. https://doi.org/10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu J, Wu Q, Wang Z, Hong J, Chen R, Li B, Hu Z, Hu X, Zhang M (2019) Inhibition of CACNA1H attenuates doxorubicin-induced acute cardiotoxicity by affecting endoplasmic reticulum stress. Biomed Pharmacother 120:109475. https://doi.org/10.1016/j.biopha.2019.109475

    Article  CAS  PubMed  Google Scholar 

  35. Xu ZM, Li CB, Liu QL, Li P, Yang H (2018) Ginsenoside Rg1 prevents doxorubicin-induced cardiotoxicity through the inhibition of autophagy and endoplasmic reticulum stress in mice. Int J Mol Sci 19(11):3658. https://doi.org/10.3390/ijms19113658

    Article  CAS  PubMed Central  Google Scholar 

  36. Michalak M, Opas M (2009) Endoplasmic and sarcoplasmic reticulum in the heart. Trends Cell Biol 19(6):253–259. https://doi.org/10.1016/j.tcb.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  37. Tscheschner H, Meinhardt E, Schlegel P, Jungmann A, Lehmann LH, Muller OJ, Most P, Katus HA, Raake PW (2019) CaMKII activation participates in doxorubicin cardiotoxicity and is attenuated by moderate GRP78 overexpression. PLoS ONE 14(4):e0215992. https://doi.org/10.1371/journal.pone.0215992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49(5):330–352. https://doi.org/10.1016/j.pcad.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Mao W, Ding B, Liang C-s (2008) ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 295(5):H1956–H1965. https://doi.org/10.1152/ajpheart.00407.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C (2002) Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Res 62(16):4592–4598

    CAS  PubMed  Google Scholar 

  41. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13(9):1423–1433. https://doi.org/10.1038/sj.cdd.4401950

    Article  CAS  PubMed  Google Scholar 

  42. Tang H, Tao A, Song J, Liu Q, Wang H, Rui T (2017) Doxorubicin-induced cardiomyocyte apoptosis: role of mitofusin 2. Int J Biochem Cell Biol 88:55–59. https://doi.org/10.1016/j.biocel.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  43. Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, Glickman MH, Weissman AM (2012) Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell 47(4):547–557. https://doi.org/10.1016/j.molcel.2012.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao L, Zhang B (2017) Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep 7(1):44735. https://doi.org/10.1038/srep44735

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shati AA (2020) Doxorubicin-induces NFAT/Fas/FasL cardiac apoptosis in rats through activation of calcineurin and P38 MAPK and inhibition of mTOR signalling pathways. Clin Exp Pharmacol Physiol 47(4):660–676. https://doi.org/10.1111/1440-1681.13225

    Article  CAS  PubMed  Google Scholar 

  46. Gu J, Fan YQ, Zhang HL, Pan JA, Yu JY, Zhang JF, Wang CQ (2018) Resveratrol suppresses doxorubicin-induced cardiotoxicity by disrupting E2F1 mediated autophagy inhibition and apoptosis promotion. Biochem Pharmacol 150:202–213. https://doi.org/10.1016/j.bcp.2018.02.025

    Article  CAS  PubMed  Google Scholar 

  47. Shabalala S, Muller CJF, Louw J, Johnson R (2017) Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci 180:160–170. https://doi.org/10.1016/j.lfs.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  48. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang X, Wang XL et al (2014) Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochem Pharmacol 88(3):334–350. https://doi.org/10.1016/j.bcp.2014.01.040

    Article  CAS  PubMed  Google Scholar 

  50. Ma Y, Yang L, Ma J, Lu L, Wang X, Ren J, Yang J (2017) Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochim Biophys Acta Mol Basis Dis 1863(8):1904–1911. https://doi.org/10.1016/j.bbadis.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Wang H, Liang EY, Zhou LX, Dong ZL, Liang P, Weng QF, Yang M (2018) Thrombopoietin protects H9C2 cells from excessive autophagy and apoptosis in doxorubicin-induced cardiotoxicity. Oncol Lett 15(1):839–848. https://doi.org/10.3892/ol.2017.7410

    Article  CAS  PubMed  Google Scholar 

  52. Xu X, Chen K, Kobayashi S, Timm D, Liang Q (2012) Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J Pharmacol Exp Ther 341(1):183–195. https://doi.org/10.1124/jpet.111.189589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kobayashi S, Volden P, Timm D, Mao K, Xu X, Liang Q (2010) Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J Biol Chem 285(1):793–804. https://doi.org/10.1074/jbc.M109.070037

    Article  CAS  PubMed  Google Scholar 

  54. Nazari Soltan Ahmad S, Sanajou D, Kalantary-Charvadeh A, Hosseini V, Roshangar L, Khojastehfard M, Haiaty S, Mesgari-Abbasi M (2020) β-LAPachone ameliorates doxorubicin-induced cardiotoxicity via regulating autophagy and Nrf2 signalling pathways in mice. Basic Clin Pharmacol Toxicol 126(4):364–373. https://doi.org/10.1111/bcpt.13340

    Article  CAS  PubMed  Google Scholar 

  55. Sishi BJ, Loos B, van Rooyen J, Engelbrecht AM (2013) Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochem Pharmacol 85(1):124–134. https://doi.org/10.1016/j.bcp.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  56. Kawaguchi T, Takemura G et al (2012) Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovasc Res 96(3):456–465. https://doi.org/10.1093/cvr/cvs282

    Article  CAS  PubMed  Google Scholar 

  57. Chen C, Jiang L, Zhang M, Pan X, Peng C, Huang W, Jiang Q (2019) Isodunnianol alleviates doxorubicin-induced myocardial injury by activating protective autophagy. Food Funct 10(5):2651–2657. https://doi.org/10.1039/c9fo00063a

    Article  CAS  PubMed  Google Scholar 

  58. Pan JA, Tang Y, Yu JY, Zhang H, Zhang JF, Wang CQ, Gu J (2019) miR-146a attenuates apoptosis and modulates autophagy by targeting TAF9b/P53 pathway in doxorubicin-induced cardiotoxicity. Cell Death Dis 10(9):668. https://doi.org/10.1038/s41419-019-1901-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pei XM, Yung BY, Yip SP, Ying M, Benzie IF, Siu PM (2014) Desacyl ghrelin prevents doxorubicin-induced myocardial fibrosis and apoptosis via the GHSR-independent pathway. Am J Physiol Endocrinol Metab 306(3):E311–E323. https://doi.org/10.1152/ajpendo.00123.2013

    Article  CAS  PubMed  Google Scholar 

  60. Rodrigues PG, Miranda-Silva D et al (2019) Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle. Am J Physiol Heart Circ Physiol 316(3):H459-h475. https://doi.org/10.1152/ajpheart.00401.2018

    Article  CAS  PubMed  Google Scholar 

  61. Narikawa M, Umemura M et al (2019) Doxorubicin induces trans-differentiation and MMP1 expression in cardiac fibroblasts via cell death-independent pathways. PLoS ONE 14(9):e0221940. https://doi.org/10.1371/journal.pone.0221940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Levick SP, Soto-Pantoja DR, Bi J, Hundley WG, Widiapradja A, Manteufel EJ, Bradshaw TW, Melendez GC (2019) Doxorubicin-induced myocardial fibrosis involves the neurokinin-1 receptor and direct effects on cardiac fibroblasts. Heart Lung Circ 28(10):1598–1605. https://doi.org/10.1016/j.hlc.2018.08.003

    Article  PubMed  Google Scholar 

  63. Shin AN, Han L, Dasgupta C, Huang L, Yang S, Zhang L (2018) SIRT1 increases cardiomyocyte binucleation in the heart development. Oncotarget 9(8):7996–8010. https://doi.org/10.18632/oncotarget.23847

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cheng HL, Mostoslavsky R et al (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100(19):10794–10799. https://doi.org/10.1073/pnas.1934713100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang L, Quan N, Sun W, Chen X, Cates C, Rousselle T, Zhou X, Zhao X, Li J (2018) Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc Res 114(6):805–821. https://doi.org/10.1093/cvr/cvy033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guan XH, Liu XH et al (2016) CD38 deficiency protects the heart from ischemia/reperfusion injury through activating SIRT1/FOXOs-mediated antioxidative stress pathway. Oxid Med Cell Longev 2016:7410257. https://doi.org/10.1155/2016/7410257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang J, Lu L et al (2019) Quercetin improve ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro and in vivo study via SIRT1/PGC-1alpha signaling. J Cell Biochem 120(6):9747–9757. https://doi.org/10.1002/jcb.28255

    Article  CAS  PubMed  Google Scholar 

  68. Xu RY, Xu XW, Deng YZ, Ma ZX, Li XR, Zhao L, Qiu LJ, Liu HY, Chen HP (2019) Resveratrol attenuates myocardial hypoxia/reoxygenation-induced cell apoptosis through DJ-1-mediated SIRT1-p53 pathway. Biochem Biophys Res Commun 514(2):401–406. https://doi.org/10.1016/j.bbrc.2019.04.165

    Article  CAS  PubMed  Google Scholar 

  69. Wang X, Yuan B, Cheng B, Liu Y, Zhang B, Wang X, Lin X, Yang B, Gong G (2019) Crocin alleviates myocardial ischemia/reperfusion-induced endoplasmic reticulum stress via regulation of miR-34a/Sirt1/Nrf2 pathway. Shock 51(1):123–130. https://doi.org/10.1097/shk.0000000000001116

    Article  CAS  PubMed  Google Scholar 

  70. Prola A, Pires Da Silva J et al (2017) SIRT1 protects the heart from ER stress-induced cell death through eIF2alpha deacetylation. Cell Death Differ 24(2):343–356. https://doi.org/10.1038/cdd.2016.138

    Article  CAS  PubMed  Google Scholar 

  71. Pires Da Silva J, Monceaux K, Guilbert A, Gressette M, Piquereau J, Novotova M, Ventura-Clapier R, Garnier A, Lemaire C (2020) SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy. Cells 9(2):426. https://doi.org/10.3390/cells9020426

    Article  CAS  PubMed Central  Google Scholar 

  72. Li K, Zhai M et al (2019) Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 pathway. Oxid Med Cell Longev 2019:6746907. https://doi.org/10.1155/2019/6746907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bagul PK, Deepthi N, Sultana R, Banerjee SK (2015) Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J Nutr Biochem 26(11):1298–1307. https://doi.org/10.1016/j.jnutbio.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  74. Waldman M, Cohen K et al (2018) Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1alpha.’ Cardiovasc Diabetol 17(1):111. https://doi.org/10.1186/s12933-018-0754-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma S, Feng J et al (2017) SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev 2017:4602715. https://doi.org/10.1155/2017/4602715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ding M, Feng N et al (2018) Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1alpha pathway. J Pineal Res 65(2):e12491. https://doi.org/10.1111/jpi.12491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. D’Onofrio N, Servillo L, Balestrieri ML (2018) SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal 28(8):711–732. https://doi.org/10.1089/ars.2017.7178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alcendor RR, Gao S et al (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100(10):1512–1521. https://doi.org/10.1161/01.RES.0000267723.65696.4a

    Article  CAS  PubMed  Google Scholar 

  79. Chen WK, Tsai YL et al (2018) Exercise training augments Sirt1-signaling and attenuates cardiac inflammation in d-galactose induced-aging rats. Aging (Albany NY) 10(12):4166–4174. https://doi.org/10.18632/aging.101714

    Article  CAS  Google Scholar 

  80. Lai CH, Ho TJ et al (2014) Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age (Dordr) 36(5):9706. https://doi.org/10.1007/s11357-014-9706-4

    Article  CAS  Google Scholar 

  81. Ren J, Yang L, Zhu L, Xu X, Ceylan AF, Guo W, Yang J, Zhang Y (2017) Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: role of Sirt1-mediated autophagy regulation. Aging Cell 16(5):976–987. https://doi.org/10.1111/acel.12616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barcena de Arellano ML, Pozdniakova S, Kuhl AA, Baczko I, Ladilov Y, Regitz-Zagrosek V (2019) Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense. Aging (Albany NY) 11(7):1918–1933. https://doi.org/10.18632/aging.101881

    Article  CAS  Google Scholar 

  83. Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS (2009) Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic Biol Med 46(12):1589–1597. https://doi.org/10.1016/j.freeradbiomed.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  84. Su S, Li Q et al (2014) Sesamin ameliorates doxorubicin-induced cardiotoxicity: involvement of Sirt1 and Mn-SOD pathway. Toxicol Lett 224(2):257–263. https://doi.org/10.1016/j.toxlet.2013.10.034

    Article  CAS  PubMed  Google Scholar 

  85. Xu C, Liu C-H, Zhang D-L (2020) MicroRNA-22 inhibition prevents doxorubicin-induced cardiotoxicity via upregulating SIRT1. Biochem Biophys Res Commun 521(2):485–491. https://doi.org/10.1016/j.bbrc.2019.10.140

    Article  CAS  PubMed  Google Scholar 

  86. Yuan YP, Ma ZG, Zhang X, Xu SC, Zeng XF, Yang Z, Deng W, Tang QZ (2018) CTRP3 protected against doxorubicin-induced cardiac dysfunction, inflammation and cell death via activation of Sirt1. J Mol Cell Cardiol 114:38–47. https://doi.org/10.1016/j.yjmcc.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  87. Lou YU, Wang Z, Xu YI, Zhou P, Cao J, Li Y, Chen Y, Sun J, Fu LU (2015) Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int J Mol Med 36(3):873–880. https://doi.org/10.3892/ijmm.2015.2291

    Article  CAS  PubMed  Google Scholar 

  88. Cappetta D, Esposito G et al (2016) SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. Int J Cardiol 205:99–110. https://doi.org/10.1016/j.ijcard.2015.12.008

    Article  PubMed  Google Scholar 

  89. Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G (2012) PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 12(1):86–99. https://doi.org/10.1016/j.mito.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  90. Tan Z, Luo X, **ao L, Tang M, Bode AM, Dong Z, Cao Y (2016) The role of PGC1alpha in cancer metabolism and its therapeutic implications. Mol Cancer Ther 15(5):774–782. https://doi.org/10.1158/1535-7163.MCT-15-0621

    Article  CAS  PubMed  Google Scholar 

  91. Guo P, Pi H et al (2014) Melatonin improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro. Toxicol Sci 142(1):182–195. https://doi.org/10.1093/toxsci/kfu164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bu X, Wu LuX, Yang L, Xu X, Wang J, Tang J (2017) Role of SIRT1/PGC-1alpha in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr Dis Treat 13:1633–1645. https://doi.org/10.2147/NDT.S129081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Di W, Lv J, Jiang S, Lu C, Yang Z, Ma Z, Hu W, Yang Y, Xu B (2018) PGC-1: the energetic regulator in cardiac metabolism. Curr Issues Mol Biol 28:29–46. https://doi.org/10.21775/cimb.028.029

    Article  PubMed  Google Scholar 

  94. Fang W-j, Wang C-j, He Y, Zhou Y-l, Peng X-d, Liu S-k (2017) Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin 39(1):59–73. https://doi.org/10.1038/aps.2017.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cui L, Guo J et al (2017) Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicol Lett 275:28–38. https://doi.org/10.1016/j.toxlet.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  96. Govender J, Loos B, Marais E, Engelbrecht AM (2018) Melatonin improves cardiac and mitochondrial function during doxorubicin-induced cardiotoxicity: a possible role for peroxisome proliferator-activated receptor gamma coactivator 1-alpha and sirtuin activity? Toxicol Appl Pharmacol 358:86–101. https://doi.org/10.1016/j.taap.2018.06.031

    Article  CAS  PubMed  Google Scholar 

  97. Liu D, Ma Z, Xu L, Zhang X, Qiao S, Yuan J (2019) PGC1alpha activation by pterostilbene ameliorates acute doxorubicin cardiotoxicity by reducing oxidative stress via enhancing AMPK and SIRT1 cascades. Aging (Albany NY) 11(22):10061–10073. https://doi.org/10.18632/aging.102418

    Article  CAS  Google Scholar 

  98. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. https://doi.org/10.1038/nrm.2017.95

    Article  CAS  PubMed  Google Scholar 

  99. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99(25):15983–15987. https://doi.org/10.1073/pnas.252625599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kobashigawa LC, Xu YC, Padbury JF, Tseng YT, Yano N (2014) Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS ONE 9(8):e104888. https://doi.org/10.1371/journal.pone.0104888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gratia S, Kay L, Potenza L, Seffouh A, Novel-Chate V, Schnebelen C, Sestili P, Schlattner U, Tokarska-Schlattner M (2012) Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc Res 95(3):290–299. https://doi.org/10.1093/cvr/cvs134

    Article  CAS  PubMed  Google Scholar 

  102. Liu GZ, Zhang S et al (2019) Aldosterone stimulation mediates cardiac metabolism remodeling via Sirt1/AMPK signaling in canine model. Naunyn Schmiedebergs Arch Pharmacol 392(7):851–863. https://doi.org/10.1007/s00210-019-01641-2

    Article  CAS  PubMed  Google Scholar 

  103. Dziewulska A, Dobosz AM, Dobrzyn A, Smolinska A, Kolczynska K, Ntambi JM, Dobrzyn P (2020) SCD1 regulates the AMPK/SIRT1 pathway and histone acetylation through changes in adenine nucleotide metabolism in skeletal muscle. J Cell Physiol 235(2):1129–1140. https://doi.org/10.1002/jcp.29026

    Article  CAS  PubMed  Google Scholar 

  104. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060. https://doi.org/10.1038/nature07813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang S, Wang Y, Zhang Z, Liu Q, Gu J (2017) Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death Dis 8(8):e3018. https://doi.org/10.1038/cddis.2017.410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L (2020) Metabolic functions of the tumor suppressor p53: implications in normal physiology, metabolic disorders, and cancer. Mol Metab 33:2–22. https://doi.org/10.1016/j.molmet.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  107. Mak TW, Hauck L, Grothe D, Billia F (2017) p53 regulates the cardiac transcriptome. Proc Natl Acad Sci USA 114(9):2331–2336. https://doi.org/10.1073/pnas.1621436114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Qi J, Wang F, Yang P, Wang X, Xu R, Chen J, Yuan Y, Lu Z, Duan J (2018) Mitochondrial fission is required for angiotensin II-induced cardiomyocyte apoptosis mediated by a Sirt1-p53 signaling pathway. Front Pharmacol 9:176. https://doi.org/10.3389/fphar.2018.00176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu Z, Wang H, Zhang L, Tang A, Zhai Q, Wen J, Yao L, Li P (2009) Both p53-PUMA/NOXA-Bax-mitochondrion and p53–p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression. Biochem Biophys Res Commun 386(4):607–611. https://doi.org/10.1016/j.bbrc.2009.06.083

    Article  CAS  PubMed  Google Scholar 

  110. Zhang C, Feng Y, Qu S, Wei X, Zhu H, Luo Q, Liu M, Chen G, **ao X (2011) Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res 90(3):538–545. https://doi.org/10.1093/cvr/cvr022

    Article  CAS  PubMed  Google Scholar 

  111. Zhang C, Qu S et al (2016) HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21(2):251–260. https://doi.org/10.1007/s12192-015-0655-3

    Article  CAS  PubMed  Google Scholar 

  112. Boengler K, Bornbaum J, Schluter KD, Schulz R (2019) P66shc and its role in ischemic cardiovascular diseases. Basic Res Cardiol 114(4):29. https://doi.org/10.1007/s00395-019-0738-x

    Article  PubMed  Google Scholar 

  113. Wang Y, Qu H, Liu J (2020) P66Shc deletion ameliorates oxidative stress and cardiac dysfunction in pressure overload-induced heart failure. J Card Fail 26(3):243–253. https://doi.org/10.1016/j.cardfail.2019.09.003

    Article  PubMed  Google Scholar 

  114. Liu Y, Li Y, Ni J, Shu Y, Wang H, Hu T (2020) MiR-124 attenuates doxorubicin-induced cardiac injury via inhibiting p66Shc-mediated oxidative stress. Biochem Biophys Res Commun 521(2):420–426. https://doi.org/10.1016/j.bbrc.2019.10.157

    Article  CAS  PubMed  Google Scholar 

  115. Zhou S, Chen HZ et al (2011) Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 109(6):639–648. https://doi.org/10.1161/CIRCRESAHA.111.243592

    Article  CAS  PubMed  Google Scholar 

  116. Zhu JN, Fu YH et al (2017) Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep 7(1):11879. https://doi.org/10.1038/s41598-017-12192-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wu YZ, Zhang L, Wu ZX, Shan TT, **ong C (2019) Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid Med Cell Longev 2019:2150394. https://doi.org/10.1155/2019/2150394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bin Jardan YA, Ansari MA, Raish M, Alkharfy KM, Ahad A, Al-Jenoobi FI, Haq N, Khan MR, Ahmad A (2020) Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-κB-mediated pathway. Biomed Res Int 2020:3921796. https://doi.org/10.1155/2020/3921796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A (2013) Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25(10):1939–1948. https://doi.org/10.1016/j.cellsig.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  120. Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I (2008) SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177(8):861–870. https://doi.org/10.1164/rccm.200708-1269OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Han X, Zhang L, Liu Y, Wu M, Li X, Zhang ZT, Li T (2020) Resveratrol protects H9c2 cells against hypoxia-induced apoptosis through miR-30d-5p/SIRT1/NF-κB axis. J Biosci 45(1):42. https://doi.org/10.1007/s12038-020-9997-9

    Article  CAS  PubMed  Google Scholar 

  122. Martin ED, Bassi R, Marber MS (2015) p38 MAPK in cardioprotection—are we there yet? Br J Pharmacol 172(8):2101–2113. https://doi.org/10.1111/bph.12901

    Article  CAS  PubMed  Google Scholar 

  123. Zhao L, Chen T, Hang P, Li W, Guo J, Pan Y, Du J, Zheng Y, Du Z (2019) Choline attenuates cardiac fibrosis by inhibiting p38MAPK signaling possibly by acting on M3 muscarinic acetylcholine receptor. Front Pharmacol 10:1386. https://doi.org/10.3389/fphar.2019.01386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kojonazarov B, Novoyatleva T et al (2017) p38 MAPK inhibition improves heart function in pressure-loaded right ventricular hypertrophy. Am J Respir Cell Mol Biol 57(5):603–614. https://doi.org/10.1165/rcmb.2016-0374OC

    Article  CAS  PubMed  Google Scholar 

  125. Wang X, Cui L, Joseph J, Jiang B, Pimental D, Handy DE, Liao R, Loscalzo J (2012) Homocysteine induces cardiomyocyte dysfunction and apoptosis through p38 MAPK-mediated increase in oxidant stress. J Mol Cell Cardiol 52(3):753–760. https://doi.org/10.1016/j.yjmcc.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  126. Guo R, Wu K et al (2013) Exogenous hydrogen sulfide protects against doxorubicin-induced inflammation and cytotoxicity by inhibiting p38MAPK/NFkappaB pathway in H9c2 cardiac cells. Cell Physiol Biochem 32(6):1668–1680. https://doi.org/10.1159/000356602

    Article  CAS  PubMed  Google Scholar 

  127. Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C (2012) SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell Mol Life Sci 69(13):2245–2260. https://doi.org/10.1007/s00018-012-0925-5

    Article  CAS  PubMed  Google Scholar 

  128. Luo W, ** Y, Wu G, Zhu W, Qian Y, Zhang Y, Li J, Zhu A, Liang G (2019) Blockage of ROS and MAPKs-mediated inflammation via restoring SIRT1 by a new compound LF10 prevents type 1 diabetic cardiomyopathy. Toxicol Appl Pharmacol 370:24–35. https://doi.org/10.1016/j.taap.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  129. Ruan Y, Dong C et al (2015) SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cell Physiol Biochem 35(3):1116–1124. https://doi.org/10.1159/000373937

    Article  CAS  PubMed  Google Scholar 

  130. Brown AK, Webb AE (2018) Regulation of FOXO factors in mammalian cells. Curr Top Dev Biol 127:165–192. https://doi.org/10.1016/bs.ctdb.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  131. Chen CJ, Yu W, Fu YC, Wang X, Li JL, Wang W (2009) Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem Biophys Res Commun 378(3):389–393. https://doi.org/10.1016/j.bbrc.2008.11.110

    Article  CAS  PubMed  Google Scholar 

  132. Hsu C-P, Zhai P et al (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122(21):2170–2182. https://doi.org/10.1161/circulationaha.110.958033

    Article  PubMed  PubMed Central  Google Scholar 

  133. Matsushima S, Sadoshima J (2015) The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol 309(9):H1375–H1389. https://doi.org/10.1152/ajpheart.00053.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Brunet A, Sweeney LB et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015. https://doi.org/10.1126/science.1094637

    Article  CAS  PubMed  Google Scholar 

  135. Wang YQ, Cao Q, Wang F, Huang LY, Sang TT, Liu F, Chen SY (2015) SIRT1 protects against oxidative stress-induced endothelial progenitor cells apoptosis by inhibiting FOXO3a via FOXO3a ubiquitination and degradation. J Cell Physiol 230(9):2098–2107. https://doi.org/10.1002/jcp.24938

    Article  CAS  PubMed  Google Scholar 

  136. Liu MH, Shan J, Li J, Zhang Y, Lin XL (2016) Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Exp Ther Med 12(2):1113–1118. https://doi.org/10.3892/etm.2016.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q (2011) Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31(12):1546–1557. https://doi.org/10.1038/onc.2011.347

    Article  CAS  PubMed  Google Scholar 

  138. Schiller M, Javelaud D, Mauviel A (2004) TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 35(2):83–92. https://doi.org/10.1016/j.jdermsci.2003.12.006

    Article  CAS  PubMed  Google Scholar 

  139. Ignotz RA, Massagué J (1986) Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261(9):4337–4345

    Article  CAS  PubMed  Google Scholar 

  140. Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY (2018) New insights into TGF-beta/Smad signaling in tissue fibrosis. Chem Biol Interact 292:76–83. https://doi.org/10.1016/j.cbi.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  141. Liu ZH, Zhang Y, Wang X, Fan XF, Zhang Y, Li X, Gong YS, Han LP (2019) SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition. Biomed Pharmacother 118:109227. https://doi.org/10.1016/j.biopha.2019.109227

    Article  CAS  PubMed  Google Scholar 

  142. Chen L, Yan KP, Liu XC, Wang W, Li C, Li M, Qiu CG (2018) Valsartan regulates TGF-beta/Smads and TGF-beta/p38 pathways through lncRNA CHRF to improve doxorubicin-induced heart failure. Arch Pharm Res 41(1):101–109. https://doi.org/10.1007/s12272-017-0980-4

    Article  CAS  PubMed  Google Scholar 

  143. Bakker PJ, Butter LM, Kors L, Teske GJ, Aten J, Sutterwala FS, Florquin S, Leemans JC (2014) Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation. Kidney Int 85(5):1112–1122. https://doi.org/10.1038/ki.2013.503

    Article  CAS  PubMed  Google Scholar 

  144. He Q, Li Z, Wang Y, Hou Y, Li L, Zhao J (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 50:208–215. https://doi.org/10.1016/j.intimp.2017.06.029

    Article  CAS  PubMed  Google Scholar 

  145. Ding S, Liu D, Wang L, Wang G, Zhu Y (2020) Inhibiting microrna-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther 372(1):128–135. https://doi.org/10.1124/jpet.119.256982

    Article  CAS  PubMed  Google Scholar 

  146. Qiu Z, Lei S et al (2017) NLRP3 inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev 2017:9743280. https://doi.org/10.1155/2017/9743280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Peng K, Liu L et al (2015) P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation. Int J Mol Med 35(5):1179–1188. https://doi.org/10.3892/ijmm.2015.2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Meng L, Lin H et al (2019) Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. J Mol Cell Cardiol 136:15–26. https://doi.org/10.1016/j.yjmcc.2019.08.009

    Article  CAS  PubMed  Google Scholar 

  149. Park S, Shin J, Bae J, Han D, Park SR, Shin J, Lee SK, Park HW (2020) SIRT1 alleviates LPS-induced IL-1beta production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells 9(3):728. https://doi.org/10.3390/cells9030728

    Article  CAS  PubMed Central  Google Scholar 

  150. Han Y, Sun W, Ren D, Zhang J, He Z, Fedorova J, Sun X, Han F, Li J (2020) SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. Redox Biol 34:101538. https://doi.org/10.1016/j.redox.2020.101538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhai J, Tao L, Zhang S, Gao H, Zhang Y, Sun J, Song Y, Qu X (2020) Calycosin ameliorates doxorubicin-induced cardiotoxicity by suppressing oxidative stress and inflammation via the sirtuin 1-NOD-like receptor protein 3 pathway. Phytother Res 34(3):649–659. https://doi.org/10.1002/ptr.6557

    Article  CAS  PubMed  Google Scholar 

  152. Kwon HS, Ott M (2008) The ups and downs of SIRT1. Trends Biochem Sci 33(11):517–525. https://doi.org/10.1016/j.tibs.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  153. Yu CL, Yang SF, Hung TW, Lin CL, Hsieh YH, Chiou HL (2019) Inhibition of eIF2alpha dephosphorylation accelerates pterostilbene-induced cell death in human hepatocellular carcinoma cells in an ER stress and autophagy-dependent manner. Cell Death Dis 10(6):418. https://doi.org/10.1038/s41419-019-1639-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yu Z, Wang S, Zhang X, Li Y, Zhao Q, Liu T (2017) Pterostilbene protects against myocardial ischemia/reperfusion injury via suppressing oxidative/nitrative stress and inflammatory response. Int Immunopharmacol 43:7–15. https://doi.org/10.1016/j.intimp.2016.11.018

    Article  CAS  PubMed  Google Scholar 

  155. Kosuru R, Kandula V, Rai U, Prakash S, **a Z, Singh S (2018) Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats. Cardiovasc Drugs Ther 32(2):147–163. https://doi.org/10.1007/s10557-018-6780-3

    Article  CAS  PubMed  Google Scholar 

  156. Lacerda D, Ortiz V et al (2018) Stilbenoid pterostilbene complexed with cyclodextrin preserves left ventricular function after myocardial infarction in rats: possible involvement of thiol proteins and modulation of phosphorylated GSK-3beta. Free Radic Res 52(9):988–999. https://doi.org/10.1080/10715762.2018.1506115

    Article  CAS  PubMed  Google Scholar 

  157. Riche DM, Riche KD, Blackshear CT, McEwen CL, Sherman JJ, Wofford MR, Griswold ME (2014) Pterostilbene on metabolic parameters: a randomized, double-blind, and placebo-controlled trial. Evid Based Complement Alternat Med 2014:459165. https://doi.org/10.1155/2014/459165

    Article  PubMed  PubMed Central  Google Scholar 

  158. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278. https://doi.org/10.1111/jpi.12360

    Article  CAS  PubMed  Google Scholar 

  159. Qin C, Zhou S, **ao Y, Chen L (2014) Erythropoietin enhances mitochondrial biogenesis in cardiomyocytes exposed to chronic hypoxia through Akt/eNOS signalling pathway. Cell Biol Int 38(3):335–342. https://doi.org/10.1002/cbin.10205

    Article  CAS  PubMed  Google Scholar 

  160. Ong SB, Hall AR, Dongworth RK, Kalkhoran S, Pyakurel A, Scorrano L, Hausenloy DJ (2015) Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology. Thromb Haemost 113(3):513–521. https://doi.org/10.1160/th14-07-0592

    Article  PubMed  Google Scholar 

  161. Coelho AR, Martins TR et al (1863) (2017) Berberine-induced cardioprotection and Sirt3 modulation in doxorubicin-treated H9c2 cardiomyoblasts. Biochim Biophys Acta Mol Basis Dis 11:2904–2923. https://doi.org/10.1016/j.bbadis.2017.07.030

    Article  CAS  Google Scholar 

  162. Lipshultz SE, Herman EH (2018) Anthracycline cardiotoxicity: the importance of horizontally integrating pre-clinical and clinical research. Cardiovasc Res 114(2):205–209. https://doi.org/10.1093/cvr/cvx246

    Article  CAS  PubMed  Google Scholar 

  163. Berretta M, Bignucolo A, Di Francia R, Comello F, Facchini G, Ceccarelli M, Iaffaioli RV, Quagliariello V, Maurea N (2020) Resveratrol in cancer patients: from bench to bedside. Int J Mol Sci 21(8):2945. https://doi.org/10.3390/ijms21082945

    Article  CAS  PubMed Central  Google Scholar 

  164. Quagliariello V, Vecchione R, De Capua A, Lagreca E, Iaffaioli RV, Botti G, Netti PA, Maurea N (2020) Nano-encapsulation of coenzyme Q10 in secondary and tertiary nano-emulsions for enhanced cardioprotection and hepatoprotection in human cardiomyocytes and hepatocytes during exposure to anthracyclines and trastuzumab. Int J Nanomed 15:4859–4876. https://doi.org/10.2147/IJN.S245170

    Article  CAS  Google Scholar 

  165. Zhang L, Zhu K, Zeng H, Zhang J, Pu Y, Wang Z, Zhang T, Wang B (2019) Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity. Int J Nanomedicine 14:6061–6071. https://doi.org/10.2147/IJN.S211130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhao Y, Huan ML, Liu M, Cheng Y, Sun Y, Cui H, Liu DZ, Mei QB, Zhou SY (2016) Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci Rep 6:35267. https://doi.org/10.1038/srep35267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Caito S, Rajendrasozhan S, Cook S, Chung S, Yao H, Friedman AE, Brookes PS, Rahman I (2010) SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J 24(9):3145–3159. https://doi.org/10.1096/fj.09-151308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Qilu Young Scholar's Program of Shandong University (21330089963007), National Natural Science Foundation of China (81700329, 81770375) and Jilin Science and Technology Department (20200801061GH).

Funding

This study was supported by Qilu Young Scholar’s Program of Shandong University (21330089963007), National Natural Science Foundation of China (81700329, 81770375) and Jilin Science and Technology Department (20200801061GH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlian Gu.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang(a), J., Zhang, J., **ao, M. et al. Molecular mechanisms of doxorubicin-induced cardiotoxicity: novel roles of sirtuin 1-mediated signaling pathways. Cell. Mol. Life Sci. 78, 3105–3125 (2021). https://doi.org/10.1007/s00018-020-03729-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03729-y

Keywords

Navigation