Log in

Diazoxide protects L6 skeletal myoblasts from H2O2-induced apoptosis via the phosphatidylinositol-3 kinase/Akt pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives and design

Transplanted cell survival might greatly improve the therapeutic efficacy of cell therapy. Diazoxide (DZ), a highly selective mitochondrial ATP-sensitive potassium channel opener, is known to suppress cell apoptosis and protect cells in oxidative stressed ischemic environment. We explored the mechanisms involved in DZ pre-treatment-induced anti-apoptotic effect on L6 skeletal myoblast (SKM).

Materials and methods

L6 SKMs were divided into control group, H2O2 group, DZ + H2O2 group and DZ + LY + H2O2 group. Treatments of 400 μmol/L H2O2 for 24 h alone, or after 200 μmol/L DZ pre-treatment for 30 min, or after DZ and 50 μmol/L LY294002 co-administration for 30 min were performed. The cell apoptosis rates were assessed by flow cytometric analysis. The changes of mitochondrial membrane potential were determined by JC-1 mitochondrial staining. The activation of phosphatidylinositol-3 kinase (PI3K)/Akt, caspase-9 and caspase-3 was detected by western blot.

Results

Compared with the H2O2 group, DZ pre-treatment protected cells from H2O2-induced damage, increased Akt phosphorylation, prevented mitochondrial membrane depolarization as well as the activation of caspase-9 and caspase-3 and decreased the cell apoptosis rate. However, the DZ-induced cytoprotective and anti-apoptosis effects were partly inhibited by co-administration of a PI3K inhibitor, LY294002.

Conclusions

These data suggest that DZ pre-treatment contributes to protection of L6 SKMs against apoptosis at least partly by activating the PI3K/Akt pathway and subsequently inhibiting the mitochondrial-mediated caspase-dependent apoptotic signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SKM:

Skeletal myoblast

DZ:

Diazoxide

PI3K:

Phosphatidylinositol-3 kinase

mitoKATP channel:

Mitochondrial ATP-sensitive potassium channels

ROS:

Reactive oxygen species

MTT:

Methyl thiazolyl tetrazolium

Annexin V-FITC/PI:

Annexin V-fluorescein isothiocyanate/propidium iodide

IOD:

Integral optical density

JC-1:

5,5′,6,6′-tetrachloro1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide

References

  1. Yu SP, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res. 2013;4(1):76–88. doi:10.1007/s12975-012-0251-0.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Hua P, Tao J, Liu JY, Yang SR. Cell transplantation into ischemic myocardium using mesenchymal stem cells transfected by vascular endothelial growth factor. Int J Clin Exp Pathol. 2014;7(11):7782–8.

    PubMed  PubMed Central  Google Scholar 

  3. Niagara MI, Haider H, Jiang S, Ashraf M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res. 2007;100(4):545–55. doi:10.1161/01.RES.0000258460.41160.ef.

    Article  PubMed  CAS  Google Scholar 

  4. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–8.

    Article  PubMed  Google Scholar 

  5. Pagani FD, DerSimonian H, Zawadzka A, Wetzel K, Edge AS, Jacoby DB, et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol. 2003;41(5):879–88.

    Article  PubMed  Google Scholar 

  6. Haider H, Ashraf M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol. 2008;45(4):554–66. doi:10.1016/j.yjmcc.2008.05.004.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Bousselmi R, Lebbi MA, Ferjani M. Myocardial ischemic conditioning: physiological aspects and clinical applications in cardiac surgery. J Saudi Heart Assoc. 2014;26(2):93–100. doi:10.1016/j.jsha.2013.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maslov LN, Barzakh EI, Krylatov AV, Chernysheva GA, Krieg T, Solenkova NV, et al. Opioid peptide deltorphin II simulates the cardioprotective effect of ischemic preconditioning: role of delta(2)-opioid receptors, protein kinase C, and K(ATP) channels. Bull Exp Biol Med. 2010;149(5):591–3.

    Article  PubMed  CAS  Google Scholar 

  9. Li H, Yang T, Long Z, Cheng J. Effect of mitochondrial ATP-sensitive potassium channel opening on the translocation of protein kinase C epsilon in adult rat ventricular myocytes. Genet Mol Res. 2014;13(2):4516–22. doi:10.4238/2014.June.17.3.

    Article  PubMed  CAS  Google Scholar 

  10. Otani H. Ischemic preconditioning: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2008;10(2):207–47. doi:10.1089/ars.2007.1679.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki K, Smolenski RT, Jayakumar J, Murtuza B, Brand NJ, Yacoub MH. Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation. 2000;102(19 Suppl 3):III216–21.

    PubMed  CAS  Google Scholar 

  12. Shao SX, Zhang L, Chen HX, Liu Y, Zhang JP, Chen W, et al. Diazoxide pretreatment enhances L6 skeletal myoblast survival and inhibits apoptosis induced by hydrogen peroxide. Anat Rec (Hoboken). 2012;295(4):632–40. doi:10.1002/ar.22410.

    Article  CAS  Google Scholar 

  13. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997;411(1):77–82.

    Article  PubMed  CAS  Google Scholar 

  14. Pouzet B, Vilquin JT, Hagege AA, Scorsin M, Messas E, Fiszman M, et al. Factors affecting functional outcome after autologous skeletal myoblast transplantation. Ann Thorac Surg. 2001;71(3):844–50.

    Article  PubMed  CAS  Google Scholar 

  15. Rocha M, Apostolova N, Hernandez-Mijares A, Herance R, Victor VM. Oxidative stress and endothelial dysfunction in cardiovascular disease: mitochondria-targeted therapeutics. Curr Med Chem. 2010;17(32):3827–41.

    Article  PubMed  CAS  Google Scholar 

  16. Djordjevic VB, Zvezdanovic L, Cosic V. Oxidative stress in human diseases. Srp Arh Celok Lek. 2008;136(Suppl 2):158–65.

    Article  PubMed  Google Scholar 

  17. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163. doi:10.1152/physrev.00013.2006.

    Article  PubMed  CAS  Google Scholar 

  18. Simerabet M, Robin E, Aristi I, Adamczyk S, Tavernier B, Vallet B, et al. Preconditioning by an in situ administration of hydrogen peroxide: involvement of reactive oxygen species and mitochondrial ATP-dependent potassium channel in a cerebral ischemia-reperfusion model. Brain Res. 2008;1240:177–84. doi:10.1016/j.brainres.2008.08.070.

    Article  PubMed  CAS  Google Scholar 

  19. Choi EM. Protective effect of diazoxide against antimycin A-induced mitochondrial dysfunction in osteoblastic MC3T3-E1 cells. Toxicol In Vitro. 2011;25(8):1603–8. doi:10.1016/j.tiv.2011.06.004.

    Article  PubMed  CAS  Google Scholar 

  20. Robin E, Simerabet M, Hassoun SM, Adamczyk S, Tavernier B, Vallet B, et al. Postconditioning in focal cerebral ischemia: role of the mitochondrial ATP-dependent potassium channel. Brain Res. 2011;1375:137–46. doi:10.1016/j.brainres.2010.12.054.

    Article  PubMed  CAS  Google Scholar 

  21. Shin BS, Kim HG, Choi OH. Mitochondrial channel opener diazoxide attenuates hypoxia-induced sFlt-1 release in human choriocarcinoma cells. J Menopausal Med. 2014;20(1):21–31. doi:10.6118/jmm.2014.20.1.21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kersten JR, Gross GJ, Pagel PS, Warltier DC. Activation of adenosine triphosphate-regulated potassium channels: mediation of cellular and organ protection. Anesthesiology. 1998;88(2):495–513.

    Article  PubMed  CAS  Google Scholar 

  23. Szewczyk A, Marban E. Mitochondria: a new target for K channel openers? Trends Pharmacol Sci. 1999;20(4):157–61.

    Article  PubMed  CAS  Google Scholar 

  24. Cui X, Wang H, Guo H, Wang C, Ao H, Liu X, et al. Transplantation of mesenchymal stem cells preconditioned with diazoxide, a mitochondrial ATP-sensitive potassium channel opener, promotes repair of myocardial infarction in rats. Tohoku J Exp Med. 2010;220(2):139–47.

    Article  PubMed  CAS  Google Scholar 

  25. Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, Zhang R, Gross GJ, Falck JR, et al. Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol. 2008;294(2):H724–35. doi:10.1152/ajpheart.00979.2007.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Abe E, Fujiki M, Nagai Y, Shiqi K, Kubo T, Ishii K, et al. The phosphatidylinositol-3 kinase/Akt pathway mediates geranylgeranylacetone-induced neuroprotection against cerebral infarction in rats. Brain Res. 2010;1330:151–7. doi:10.1016/j.brainres.2010.02.074.

    Article  PubMed  CAS  Google Scholar 

  27. Xue Y, **e N, Lin Y, Xu J, Han Y, Wang S, et al. Role of PI3K/Akt in diazoxide preconditioning against rat hippocampal neuronal death in pilocarpine-induced seizures. Brain Res. 2011;1383:135–40. doi:10.1016/j.brainres.2011.01.037.

    Article  PubMed  CAS  Google Scholar 

  28. Ahmad N, Wang Y, Haider KH, Wang B, Pasha Z, Uzun O, et al. Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning. Am J Physiol Heart Circ Physiol. 2006;290(6):H2402–8. doi:10.1152/ajpheart.00737.2005.

    Article  PubMed  CAS  Google Scholar 

  29. Su C, **a T, Ren S, Qing S, **g D, Lian H, et al. Effect of diazoxide preconditioning on cultured rat myocardium microvascular endothelial cells against apoptosis and relation of PI3K/Akt pathway. Balk Med J. 2014;31(1):83–7. doi:10.5152/balkanmedj.2013.8458.

    Article  Google Scholar 

  30. Afzal MR, Haider H, Idris NM, Jiang S, Ahmed RP, Ashraf M. Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappaB signaling. Antioxid Redox Signal. 2010;12(6):693–702. doi:10.1089/ars.2009.2755.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101. doi:10.1126/science.1106148.

    Article  PubMed  CAS  Google Scholar 

  32. Siragusa M, Katare R, Meloni M, Damilano F, Hirsch E, Emanueli C, et al. Involvement of phosphoinositide 3-kinase gamma in angiogenesis and healing of experimental myocardial infarction in mice. Circ Res. 2010;106(4):757–68. doi:10.1161/CIRCRESAHA.109.207449.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.

    Article  PubMed  CAS  Google Scholar 

  34. Matsuzaki H, Tamatani M, Mitsuda N, Namikawa K, Kiyama H, Miyake S, et al. Activation of Akt kinase inhibits apoptosis and changes in Bcl-2 and Bax expression induced by nitric oxide in primary hippocampal neurons. J Neurochem. 1999;73(5):2037–46.

    PubMed  CAS  Google Scholar 

  35. Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol. 1999;19(8):5800–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Fujita E, **bo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun. 1999;264(2):550–5. doi:10.1006/bbrc.1999.1387.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Nature Science Foundation of Hebei Province, No. H2015206440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suxia Shao.

Additional information

Responsible Editor: Yoshiya Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liu, Y., Xue, G. et al. Diazoxide protects L6 skeletal myoblasts from H2O2-induced apoptosis via the phosphatidylinositol-3 kinase/Akt pathway. Inflamm. Res. 65, 53–60 (2016). https://doi.org/10.1007/s00011-015-0890-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0890-1

Keywords

Navigation