Log in

Multiplicity Solutions for a Class of Fractional Hamiltonian Systems With Concave–Convex Potentials

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and nonuniqueness of nontrivial solutions for a class of fractional Hamiltonian systems with concave–convex potentials via the variational methods. A new twisted condition is introduced, which yields a new compact embedding theorem. Some results are new even for second-order Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Coti, V.: Zelati, Multiple homoclinic orbits for a class of conservative systems. Rend. Sem. Mat. Univ. Padova 89, 177–194 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Benhassine, A.: Infinitely many solutions for a class of fractional Hamiltonian systems with combined nonlinearities. Anal. Math. Phys. https://doi.org/10.1007/s13324-017-0197-1

  3. Benhassine, A.: Multiplicity of solutions for non-periodic perturbed fractional Hamiltonian systems. Electron. J. Differ. Equ. 2017(93), 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bin, G.: Multiple solutions for a class of fractional boundary value problems. Abstr. Appl. Anal. Article ID 468980 (2012)

  5. Bai, C.: Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem. Abstr. Appl. Anal. Article ID 963105 (2012)

  6. Bonanno, G., Rodríguez-López, R., Tersian S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fractional Calculus Appl. Anal. 17, 717–744 (2014)

  7. Bai, Z.B., Chen, Y.Q., Lian, H.R., Sun, S.J.: On the existence of blow up solutions for a class of fractional differential equations. Fract. Calculus Appl. Anal. 17, 1175–1187 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Chang, K.C.: Infinite dimensional morse theory and multiple solution problems. Birkh\({\ddot{{\rm a}}}\)user (1993)

  9. Chen, G.W.: Superquadratic or asymptotically quadratic Hamiltonian systems: ground state homoclinic orbits. Annali di Matematica Pura ed Applicata 194, 903–918 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, P., He, X.F., Tang, X.H.: Infinitely many solutions for a class of fractional Hamiltonian systems via critical point theory. Math. Methods Appl. Sci. 39(5), 1005–1019 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, Y.H.: Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal. 25(11), 1095–1113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, Y.H., Lee, C.: Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems. Nonlinear Anal. 71, 1395–1413 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. Differ. Equ. 22, 58–76 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Izydorek, M., Janczewska, J.: Homoclinic solutions for a class of the second order Hamiltonian systems. J. Differ. Equ. 219, 375–389 (2005)

    Article  MATH  Google Scholar 

  15. Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \({\mathbb{R}}^{N}\). Proc. R. Soc. Edinb. Sect. A Math. 129, 787–809 (1999)

    Article  MATH  Google Scholar 

  16. Korman, P., Lazer, A.C.: Homoclinic orbits for a class of symmetric Hamiltonian systems. Electron. J. Differ. Equ. 1994, 1–10 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Ledesma, C.E.T.: Existence and concentration of solution for a class of fractional Hamiltonian systems with subquadratic potential. ar**v:1503.06829 (2015)

  18. Méndez, A., Torres, C.: Multiplicity of solutions for fractional hamiltonian systems with Liouville-Weyl fractional derivatives. Fract. Calculus Appl. Anal. 18, 875–890 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Nyamoradi, N., Zhou, Y.: Homoclinic orbits for a class of fractional Hamiltonian systems via variational methods. J. Optim. Theory Appl. 1–13 (2016)

  20. Omana, W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integral Equ. 5, 1115–1120 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Ou, Z.-Q., Tang, C.-L.: Existence of homoclinic solution for the second order Hamiltonian systems. J. Math. Anal. Appl. 291, 203–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS, Regional Conf. Ser. in Math., vol. 65. Amer. Math. Soc., Providence, RI (1986)

  23. Rabinowitz, P.H.: Homoclinic orbits for a class of Hamiltonian systems. Proc. R. Soc. Edinb. Sect. A 114, 33–38 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rabinowitz, P.H., Tanaka, K.: Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206, 473–499 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, J., Wu, T.F.: Multiplicity and concentration of homoclinic solutions for some second order Hamiltonian systems. Nonlinear Anal. 114, 105–115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, J., Wu, T.F.: Homoclinic solutions for a second-order Hamiltonian system with a positive semi-definite matrix. Chaos Solitons Fract. 76, 24–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Torres, C.: Existence of solutions for fractional Hamiltonian systems. Electron. J. Differ. Equ. 2013, 1–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Torres, C.: Existence of solution for perturbed fractional Hamiltonian systems. J. Fract. Calculus Appl. 6, 62–70 (2015)

    MathSciNet  Google Scholar 

  29. Torres, C.: Ground state solution for differential equations with left and right fractional derivatives. Math. Methods Appl. Sci. (2015)

  30. Torres, C., Zhang, Z.: Concentration of ground state solutions for fractional Hamiltonian systems. Topol. Methods Nonlinear Anal. https://doi.org/10.12775/TMNA.2017.033

  31. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, Vol. 24. Birkhäuser. Mass (1996)

  32. Wan, L.-L., Tang, C.-L.: Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition. Discret. Contin. Dyn. Syst., Ser. B 15 255–271 (2011)

  33. Xu, J.F., O’Regan, D., Zhang, K.Y.: Multiple solutions for a class of fractional Hamiltonian systems. Fract. Calculus Appl. Anal. 18, 48–63 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Yang, M.-H., Han, Z.-Q.: Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities. Nonlinear Anal. 74, 2635–2646 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ye, Y.-W., Tang, C.-L.: Multiple homoclinic solutions for second-order perturbed Hamiltonian systems. Stud. Appl. Math. 132, 112–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan, R., Zhang, Z.: Homoclinic solutions for a class of second order Hamiltonian systems. Results Math. 61, 195–208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Z., Ledesma, C.E.T.: Solutions for a class of fractional Hamiltonian systems with a parameter. J. Appl. Math. Comput. 1–18 (2016)

  38. Zhang, Z., Yuan, R.: Variational approach to solutions for a class of fractional Hamiltonian systems. Math. Methods Appl. Sci. 37, 1873–1883 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, Z., Yuan, R.: Solutions for subquadratic fractional Hamiltonian systems without coercive conditions. Math. Methods Appl. Sci. 37, 2934–2945 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Z., Yuan, R.: Infinitely-many solutions for subquadratic fractional Hamiltonian systems with potential changing sign. Adv. Nonlinear Anal. 4, 59–72 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, Z., Yuan, R.: Existence of solutions to fractional Hamiltonian systems with combined nonlinearities. Electron. J. Differ. Equ. 2016, 1–13 (2016)

  42. Zhou, Y., Zhang, L.: Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems. Comput. Math. Appl. 73(6), 1325–1345 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Lun Wu.

Additional information

This work was supported by National Natural Science Foundation of China (no. 11626198), the Young scholars development fund of Southwest Petroleum University (SWPU) (Grant no. 201599010116) and the Fundamental Research Funds for the Central Universities (no. XDJK2014B041).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, DL., Li, C. & Yuan, P. Multiplicity Solutions for a Class of Fractional Hamiltonian Systems With Concave–Convex Potentials. Mediterr. J. Math. 15, 35 (2018). https://doi.org/10.1007/s00009-018-1079-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1079-y

Keywords

Mathematics Subject Classification

Navigation