Log in

A New Class of Kernels Leading to an Arbitrary Decay in Viscoelasticity

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A new assumption on the relaxation in a viscoelastic problem ensuring uniform stability in an arbitrary rate is established. This assumption replaces a usual condition and allows for a much wider class of kernels. As consequences several earlier results are extended and improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau–Boussouira F., Cannarsa P.: A general method for proving sharp energy decay rates for memory–dissipative evolution equations. C. R. Acad. Sci. Paris, Ser. I 347, 867–872 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appleby J. A. D., Fabrizio M., Lazzari B., Reynolds D. W.: On exponential asymptotic stability in linear viscoelasticity. Math. Models Methods Appl. Sci. 16, 1677–1694 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boltzmann L.: Zur Theorie der Elastischen Nachwirkung. Sitzungsber. Math. Naturwiss. KL. Kaiserl. Acad. Wiss. 70(2), 175 (1874)

    Google Scholar 

  4. Cavalcanti M. M., Domingos Cavalcanti V. N., Lasiecka I.: Well–posedness and optimal decay rates for the wave equation with nonlinear boundary dam**–source interaction. J. Diff. Eqs. 236, 407–459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavalcanti M. M., Domingos Cavalcanti V. N., Martinez P.: General decay rates estimates for viscoelastic dissipative systems. Nonl. Anal.: T. M. A. 68(1), 177–193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlocal boundary dam**, Diff. Integral Eqs., 14 (2001), no. 1, 85–116.

    Google Scholar 

  7. Christensen R. M.: Theory of Viscoelasticity: An Introduction. Academic Press, New York and London (1977)

    Google Scholar 

  8. M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Stud. Appl. Math., Philadelphia 1992.

  9. Fabrizio M., Polidoro S.: Asymptotic decay for some differential systems with fading memory. Appl. Anal. 81, 1245–1264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Furati K. M., Tatar N.–e.: Uniform boundedness and stability for a viscoelastic problem. Appl. Math. Comp. Vol. 167, 1211–1220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Han H. S., Wang M. X.: Global existence and uniform decay for a nonlinear viscoelastic equation with dam**. Nonl. Anal.: T. M. A. 70(9), 3090–3098 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu W.: Uniform decay of solutions for a quasilinear system of viscoelastic equations. Nonl. Anal.: T. M. A. 71(5–6), 2257–2267 (2009)

    Article  MATH  Google Scholar 

  13. W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time–dependent dissipation and source terms, J. Math. Physics 50(11) (2009), Art. #113506.

  14. M. Medjden and N.-e. Tatar, On the wave equation with a temporal nonlocal term, Dynamic Systems and Applications (16) (2007), 665-672.

  15. M. Medjden and N.-e. Tatar, Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel, Appl. Math. Comput. Vol. 167, No. 2 (2005), 1221-1235.

    Google Scholar 

  16. Messaoudi S.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2), 1457–1467 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Messaoudi S., Tatar N.–e.: Global existence and asymptotic behavior for a nonlinear viscoelastic problem. Math. Sci. Res. J. 7(4), 136–149 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Messaoudi S., Tatar N.–e.: Exponential and polynomial decay for a quasilinear viscoelastic equation. Nonl. Anal.: T. M. A. 68(4), 785–793 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Messaoudi S., Tatar N.–e.: Exponential decay for a quasilinear viscoelastic equation. Math. Nachr. 282(10), 1443–1450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Muñoz Rivera J., Barreto R. K.: Uniform rates of decay in nonlinear viscoelasticity for polynomially decaying kernels. Applicable Analysis 60, 341–357 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. J.Muñoz Rivera and M. G. Naso, On the decay of the energy for systems with memory and indefinite dissipation, Asympt. Anal. 49 No. 3–4 (2006), 189–204.

    Google Scholar 

  22. Muñoz Rivera J., QuispeGómez F. P.: Existence and decay in non linear viscoelasticity. Boll. Unione Mat. Ital. Ser. B Artic. Ric. Mat. (8) 6, 1–37 (2003)

    MATH  Google Scholar 

  23. Muñoz Rivera J., Salvatierra A. P.: Asymptotic behaviour of the energy in partially viscoelastic materials. Quart. Appl. Math. 59(3), 557–578 (2001)

    MathSciNet  MATH  Google Scholar 

  24. J. Muñoz Rivera and A. P. Salvatierra, Decay of the energy to partially viscoelastic materials, Mathematical models and methods for smart materials (Cortona, 2001), 297–311, Ser. Adv. Math. Appl. Sci. 62, World Sci. Publ., River Edge, NJ, 2002.

  25. V. Pata, Exponential stability in linear viscoelasticity, Quart. Appl. Math. Volume LXIV, No. 3 (2006), 499–513.

  26. N.–e. Tatar, On a problem arising in isothermal viscoelasticity, Int. J. Pure and Appl. Math., Vol. 3, No. 1 (2003), 1–12.

  27. N.–e. Tatar, Long time behavior for a viscoelastic problem with a positive definite kernel, Australian J. Math. Anal. Appl. Vol. 1 Issue 1, Article 5, (2004), 1–11.

  28. Tatar N.–e.: Polynomial stability without polynomial decay of the relaxation function. Math. Meth. Appl. Sci. 31(15), 1874–1886 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tatar N.–e.: How far can relaxation functions be increasing in viscoelastic problems. Appl. Math. Letters 22(3), 336–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tatar N.–e.: Exponential decay for a viscoelastic problem with singular kernel. Zeit. Angew. Math. Phys. 60(4), 640–650 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tatar N.–e.: On a large class of kernels yielding exponential stability in viscoelasticity. Appl. Math. Comp. 215(6), 2298–2306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tatar N.–e.: Arbitrary decays in viscoelasticity. J. Math. Physics 52(1), 013502 (2011)

    Article  MathSciNet  Google Scholar 

  33. Yu S. Q.: Polynomial stability of solutions for a system of nonlinear viscoelastic equations. Applicable Anal. 88(7), 1039–1051 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser–eddine Tatar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatar, N. A New Class of Kernels Leading to an Arbitrary Decay in Viscoelasticity. Mediterr. J. Math. 10, 213–226 (2013). https://doi.org/10.1007/s00009-012-0177-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-012-0177-5

Mathematics Subject Classification (2010)

Keywords

Navigation